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Transitions between two quantum Hall states or between a quantum Hall state and a Mott insulator
induced by periodic potentials are studied in the 1/N expansion. The transitions are found to be continu-
ous in the large-N limit and are described by a critical point that depends on a real parameter 0, which is
determined by the topological orders in the quantum Hall states involved in the transition. Some critical
exponents and universal quantities are calculated in the large-N limit and shown to be 0 dependent.

PACS numbers: 71.28.+d, 71.30.+h

Recent experiments clearly show that the transitions
between some quantum Hall (QH) states are described
by critical phenomena [1]. It is generally believed that
such transitions are related to the localization of the
quasiparticles or electrons [the latter case corresponds to
the QH-Anderson-insulator (QH-AI) transition] in the
presence of random potentials [2-6]. We know that a
hierarchical QH state at level l+ 1 is obtained by a con-
densation of the quasiparticles on top of a level l
hierarchical state. If the random potential destroys the
condensation and localizes the quasiparticle, the level
l+1 QH state will change to the level l QH state [5].
Thus the QH-QH transition can be viewed as a QH-AI
transition for the quasiparticles. We have little theoreti-
cal understanding about the QH-AI transitions. One is
not even sure, based on theory, whether the transition is
continuous or not. To show the transition to be continu-
ous we must show that the associated critical point con-
tains one and only one relevant operator. However, some
properties of the QH-AI transitions can be studied based
on general principles by assuming the transitions to be
continuous [3-6], or by numerical calculations [7].
Reference [5] has given detailed discussions on the QH-
QH transitions.

In this paper, we will study a diff'erent but related

problem: Instead of random potentials, we will turn to a
periodic potential to drive a QHQH or QH Mott
insulator (QH-MI) transition. The periodic potential is
chosen to be such that there is one electron per unit cell
(which will induce a QH-MI transition) or one quasipar-
ticle per unit cell (which will induce a QH-QH transi-
tion) [8]. The main idea is to map the problem of the
QH-M I transition to the problem of the superfiuid-
Mott-insulator (S-MI) transition by introducing a statist-
ical gauge field and the Chem-Simons (CS) term [5,9].
Then we will include the fluctuations of the statistical
gauge field at the critical point to obtain new corrections.

It was suggested [5] that the critical exponents are the
same for all transitions between QH states (at least in the
presence of disorder), because it was argued that the
gauge fluctuations about the mean-field solution are ir-
relevant. One purpose of this paper is to study the
relevance of the gauge fluctuations for the transitions in-
duced by periodic potential. We find the gauge fluctua-
tions represent a marginal perturbation and the critical
exponents depend on the coeScient in front of the CS
term.

We start with the QH-MI transition of an anyon sys-
tem in a magnetic field —later we will apply the results to

!
the QH-QH transitions —with the Lagrangian

X =i@ (t), —ie*Ao —iao)N+ Nt(B; —ie*A; —ia;) &—V(x)&t@—g!N! + a„&~ie""
2m

where @ is a bosonic field, A„ the external electromagnet-
!ic field, V a periodic potential, and 0 the statistical angle

of the anyons. When V=0, (1) has a mean-field ground
state @=const and A„+a„=O, which describes a QH
state. Now let us turn to the periodic potential V with
one anyon per unit cell (on average). For large V, the
on-site repulsion is strong and the intersite hopping is
weak, because the anyons are strongly localized at each
site. We expect the system to become a Mott insulator.
In particular, if we ignore the fluctuations of the gauge
field a„around its mean-field value, the problem is identi-
cal to the problem of the S-MI transition for bosons,
which has been studied in detail in Refs. [10-12]. The

critical point of the S-MI transition in d spatial dimen-
sions is in the same universality class as the (d+ I)-
dimensional X-Y model. Near the critical point, the bo-
son theory is described by the following effective theory
[10-12] (from now on we will work in the Euclidian
space replacing t —it ):

Z =+!(cl„te*A„ta—„)tl! '+m—'tit'y+ g!y! 4, (2)

where m ' is proportional to the correlation length g,
which diverges at the critical point. We did not include
the term i2C&t(8„—ie*A„—ia„)ttt in (2), since it can be
absorbed in the !p! term by a gauge transformation, re-
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suiting in a shift m m +C . The dynamical
ponent z equals 1 for the S-MI transition, so the eA'ective

theory is relativistic and we have chosen the velocity of
the superfluid mode to be one. With no fluctuations of
the gauge field a„ included, (2) certainly cannot describe
the QH-MI transition. However, if the fluctuations of a„
are not too strong, we can study the critical point of the
QH-MI transition by doing perturbation around that of
the S-MI transition. To have a systematic expansion, let
us consider the large-N limit of the S-MI transition and
then include the fluctuations of a„, resulting in the follow-
ing effective theory for the QH-MI transition:

X= g [~(tl„ie*—A„—ia„)y;~'+m'y;y;]

2
N+~ g y'y; + '

a„ t)~,e"'. (3)
N

Here we use a„and A„ to denote the fluctuations around
the mean-field solution. When m (0, the system is in
a QH phase ((p;)a0) with a Hall conductance a„~= —(z/0)e* /h. When m )0, the system is in an insu-
lating phase ((p;) =0). The critical properties of the
QH-MI transitions at m =0 can be obtained perturba-
tively in 1/N expansions. (Here m should be viewed as
the renormalized mass. )

In the limit 0 0, the fluctuations of a„can be ignored
and (3) is equivalent to the spin model with 2N com-
ponents [13]. The spin model has two fixed points in
three dimensions, the unstable Guassian one and the
strong coupling one. The latter has only one spin-singlet
relevant operator which couples to the chemical potential
and controls the S-MI transition. The properties of the
strong coupling fixed point are well known in the large-N
limit, so we have a good starting point to do the 1/N ex-
pansion. The Lagrangian (3) with N =1 and m =0 was
first studied in Ref. [14]. Also Park studied in detail the
CP Lagrangian with a CS term, a model closely related
to ours [15]. Part of our study confirms her results ex-
cept for some numerical factors. Below we will discuss
physical properties at or near the critical point of the
QH-MI transition.

Let II„,be the exact polarization tensor of the p field,
or the exact self-energy of the gauge field a„. In terms of
it, we have the following eff'ective theory for a„:

ff 2 (a„+e*A„)II„„(a,+e*A,)+ '
a„&~ie"'

40
(4)

Choosing the gauge ao =AD =0 and integrating out a; we

get
1 1

2

son p; the physical resistivity tensor is given by

1 1 20+p. — „p~,», p~y
— „pp,xy

e e

which is just the composition rule discovered in Ref. [16].
Here p&/J (ap )/J

—l

In general, H„, takes the following form:

II„,(p„) = (8„, p„p—„/p')p 'f(p', m', A)

+e„„ipqh(p, m, A),

where A is the high-energy cutoff'. Because H„, is the
correlation of the conserved current which has no anoma-
lous dimensions, we expect that as A ~, H is finite
near the critical point. (For this to be true, m should be
regarded as the renormalized mass or the inverse of the
physical correlation length. ) Thus in the limit p, m «A,
one has f(p, m, A) =f(p /m ), h(p, m, A) =h(p /
m ), where f and h are finite for finite p as m 0 [17].

Here we would like to address an important issue in

this paper. Namely, whether the inclusion of the gauge
field fluctuations for finite 0 is a relevant, marginal, or an
irrelevant perturbation with respect to the 0 =0 case
which describes the S-MI transition. The above argued
finiteness of h as both A ~ and m 0 implies that
the CS term does not receive infinite renormalization so
that the a„ fluctuations represent an exactly marginal
perturbation. We have confirmed this through an explicit
calculation to the next-to-leading order in 1/N expansion
[18]. Furthermore, one can show from the Ward identity
that with finite mass m )0, the CS term does not re-
ceive any radiative corrections, i.e., h (0,m ) =0. Of
course, all of these agree with the famous nonrenormali-
zation theorem for the CS term in the literature [14,19].
Thus the S-MI critical point survives the gauge field fluc-
tuations, but the exponents and universal quantities are
expected to be modified by the fluctuations and acquire a
0 dependence.

In the leading order of the 1/N expansion, (1/N)
(and to all orders in 0), only the graph in Fig. 1(a) con-
tributes to f and h and gives [11,14], at the critical point
m =0,

(1 b)

where II,";=(N/28)e"" ki in momentum space. (5) al-
lows us to calculate physical conductivity, compressibili-
ty, and orbital magnetic susceptibility from H„,. For ex-
ample, let a&;~ = —II;~/ko be the conductivity of the bo-
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(1e)

FIG. l. (a) The graph for the self-energy of the gauge field

a„. (b), (c) The graphs for the correlation (ptp;&. (d), (e) The
graphs for the correlation ((p; 1S;)(p; p;)).
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(10)

(F' —H')+O(N ').N
(1 i)

4n
The second term comes from the p interaction [13] and
the third and fourth terms from Fig. 1(e).
=fd xdtP~iti;~ is the only relevant spin-singlet opera-
tor that controls the transition, at least in the larger-N
limit. So the QH-MI transition is continuous, with the
exponent v [defined by (—(p —p, ) ", p, the critical
chemical potential],

1 32 1 4=1- + F
3 —l(f'y l 3~' 2N 3~'

(F —H )+O(N ) (12)N
4z

The value of v is determined by 0 as one can see from (S)
and (9).

Alternatively, one may introduce N statistical gauge
fields ai„ that couple to each pt to obtain a new large-N

f—=a&,» =N —,', +O(N ), —it =a&„~ =0+O(N ) .

(s)
Here o.

& can be viewed as the critical conductance of the
boson s.

Next we calculate the scaling exponents at the QH-MT
transition. The dynamical exponent is z = 1. This is be-
cause the model (3) has the Lorentz symmetry and there
are no spin-singlet relevant operators that break the
Lorentz symmetry [20]. To obtain the scaling dimension
of the operator p; at the first order of the 1/N expansion
(1/N), we only need to calculate the graphs in Figs. 1(b)
and 1(c) for the propagator of p;. The dotted line repre-
sents the ~p~ interaction, and the wavy line the fully
dressed a„propagator, which has the form

Gg p„=F(8p» p~py/p )p + Hepyipip
—

1
—2

F= (9)
(~,„„)'+(a,,„,—N/2e)' '

H= ai, y
—N/20

(~,„„)'+(~,„,—N/2e)' '

in the Landau gauge (j„a„=0)and at the critical point.
Note F and H are of order 1/N. We find (Pt—chili~)
~p [1+(4F/3ir )lnp+ alnp]. The F term comes from
the gauge interactions in Fig. 1(c) and the a term comes
from the p" interactions in Fig. 1(b) that were calculated
before [13]. Thus the scaling dimension of p is [21]

[ ]=—+ + +O(N ').
3ir' 3lr'

The correlation function of gp; p; up to order (1/N)
is given by Figs. 1(d) and 1(e). Other graphs containing
the gauge field at this order are ultraviolet finite in

dimensional regularization and have no contribution to
the anomalous dimension of P; P;. Figure 1(d) gives
((p; p;)-~(p; p;)~) eep+const. Thus the leading term for
the scaling dimension of P; P; is [P;(f;]=2. At the order
of 1/N, we have [21]

[(i~,ty;] = 2 — + F
3z 2N 3z

theory:
JV

[~ ('9p ie Ap iaido)Pi ~
+m iiii~ilij]

' 2jv

+ Z Ai (fbi +Z atp~&u. ~
N g 40

(i 3)

In this large-N theory, the result in Ref. [14] implies that
the conductance cr& is 0 dependent at the leading order
(i/N )

f=a—
i, „„= +O(N )+O(0 ),

(i4)

+guet'+ ' a„8~i,e"" (17)4'
with q an even integer. The CS term of the new gauge
field a„binds q units of flux to the quasiparticle and does
not change its statistics. It allows the quasiparticles to
condense into different Laughlin states ((&) =const),
each giving rise to a new QH state described by (15) and
(17) and labeled by (dimK+1)-dimensional matrix K
and vector t:

Kgj lg tIK=
lj q

' 0
t=

For more details, see Ref. [22]. One may view the above
description of the QH-QH transitions as a generalization
of those in Ref. [5].

Concerning only the transition of the quasiparticles, all
the low-lying excitations are described by +I and we can
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(is)

+O(N )+O(9 ) .
7t2

Note in Ref. [5] that a& is assumed to be independent of
0; this together with (6) forms the basis of their law of
correspondence. In (14) our a& does receive 0-dependent
corrections due to gauge field fluctuations. Thus the law

of correspondence does not apply to QH-QH and QH-MI
transitions induced by periodic potentials.

Now let us consider the transition between two (Abeli-
an) QH states. In the generalized hierarchical construc-
tion [22], a generic Abelian QH state is characterized by
a symmetric integer matrix KIJ and a charge vector tl,
with the eflective Lagrangian

Kija(„8„ajge""+i A„ti8„ati,e"" . (is)
4z " 2z

The filling fraction is vir = gati(K ') iJ tJ. There are
dimE kinds of diAerent quasiparticles, each respectively
carries a unit charge of al. A composite quasiparticle
that contains l~ quasiparticles of the Ith kind has a statis-
tics OI and a charge e*:

8i =ir+ll(K )IJlj, e* =g li(K ')ijt je . (16)
Let NI be the field that describes the above composite
quasiparticle. The low-energy dynamics of the quasipar-
ticle is"described by the effective Lagrangian [22]

1
'

. .
' '

18„+i2 liai„+i a, et + —m I@i I

2 2
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i v~e~ e"' — A r) 2 e"" .
4 p v (19)
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y, xx e Q 2

[(20//V )crt, „„]+ [I —(20//V )ot,,„r]
(20)

cry, xy (20/&) (tTy, xx+ cry, xy) e* e

[(20//V) ~, „„]'+ [I —(20//V) ~, „,] '
Before the transition a&=0. After the transition o.

&

At the transition tT& is given by (8) or (14). The
conductivity and other linear responses at the transition
point are determined by the statistics 0 and the charge e*
of the quasiparticles. 0 and e* can be calculated from
(16). The 2tr shift in 0 can be determined from the re-
quirement vtr

—(tr/0)e* /e =vie, where vtc is the filling
fraction of the IC QH state. These discussions apply also
to the transitions between the multilayer and spin unpo-
larized QH states.

Let us consider hierarchical states with filling fraction
vtr =k/(pk+ I ) (p is even), including the I, —,', —', , . . .

states. The K matrix and the charge vector t were given
in Ref. [22]. For e* = I/(kp+ I) quasiparticle, 0t/tr = I

p/(pk+ I). Thus 0/tr = I —
q

—p/(pk+ I ) (q is a
nonzero even integer). The condensation of such quasi-
particle leads to a new QH state with filling fraction
vtr- = vie+ (pk+ 1) ' [(q —I ) (pk+ I )+p] '. This series
includes 3 5 7 . . . QH states. In particular, for the
transition between vtc =k/(2k+ I ) and vie =(k+ I)/[2(k
+ I)+ ll QH states (q =p =2), we have e* = I/(2k+ I)
and 0/tr = —(2k+3)/(2k+ I).
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integrate out el. This leads to the effective theory

—I(~,+te*&,+ ta, )+t I'+ —m'I+t I'+gI+t I'+

Equation (19) is identical to (3) with 0=0t+qtr, N= I,
and an additional CS term for the electromagnetic field,
which comes from the "vacuum, " the QH state of filling
fraction vie. Equation (19) describes a system of quasi-
particles with charge e* and statistics 0 and an inert sys-
tem of the parent QH state of filling fraction vie. This
confirms the picture that, with the parent QH state being
inert, the QH-QH transition is equivalent to the QH-MI
transition for the qusiparticles. The total conductivity of
the system is the conductivity of the quasiparticles calcu- [8] I
lated previously plus the conductivity of the underlying
QH state [5]: a
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