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Dynamics of Simultaneous Ordering and Phase Separation
and EA'ect of Long-Range Coulomb Interactions
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The dynamics of simultaneous ordering and phase separation in the presence of a long-range Coulomb
interaction is investigated by a computer simulation. It is shown that an intermediate nonstoichiometric
ordered single phase appears as a transient phase during decomposition of a binary homogeneous disor-
dered solid solution into an equilibrium two-phase mixture of ordered and disordered phases. Introduc-
tion of the long-range Coulomb interactions results in a mesoscale phase which consists of periodical ar-
rays of ordered phase particles embedded in a disordered matrix.

PACS numbers: 64.70.Kb, 81.30.Mh, 82.20.Wt

Simultaneous ordering and phase separation is a very
common and complex phenomenon in metallic alloys,
ceramics, and minerals and even compound semiconduc-
tors. It occurs during decomposition of a homogeneous
disordered phase into a two-phase mixture of ordered and
disordered phases. Its dynamics has been explored re-
cently by various techniques including computer simula-
tions [1-3], thermodynamic stability analyses [4-6], and
experiments [7-10]. However, the effect of long-range
Coulomb interaction on the nonlinear dynamics of order-
ing and phase separation seems to have never been dis-
cussed, although it is directly related to the interesting
phenomenon of nanoscale ordered domain formation in
oxide compounds, A(BIt3B2't3)03, where A, B', and B"
are cations with diAerent valences.

Virtually all previous theories of diAusional phase
transformations are based on the finite-range model of in-
teratomic interactions. This is the main reason why the
total configurational energy of a multiphase system can
be presented as a sum of the bulk and interfacial ener-
gies. The interfacial energy, unlike the bulk energy, de-
pends on the multiphase morphological pattern. Howev-
er, if the interatomic interaction radius is infinite (or very
long), a separation of the total configuration energy into
the bulk and interfacial energies becomes problematic.
In such a case, not only the interfacial energy but also the
bulk energy itself become functions of the multiphase
mesoscale structural pattern. Familiar examples are fer-
romagnetics, ferroelectrics, and coherent multiphase mix-
tures characterized by the infinite-range magnetic, elec-
tric, and elastic dipole-dipole interactions which control
their mesoscale morphologies.

Ceramic compounds are typical examples of systems
with another type of long-range interatomic interaction,
the Coulomb interaction. A model system which will be
considered below is a ceramic compound undergoing a
diAusional transformation involving ions of the same sign,
say, cations, whereas the diAusion of ions of opposite sign,

anions occupying diAerent sublattices, are practically
frozen. We assume that the finite-range interaction alone
would result in decomposition of a disordered phase into
a mixture of ordered and disordered phases. The ques-
tion is how the kinetics of decomposition will be aAected
by the introduction of a long-range Coulomb interaction.
It is qualitatively clear that the presence of a long-range
Coulomb interaction requires that the phase separation
occurs at a larger undercooling since any clustering of
ions of the same charge results in a local charge inhomo-
geneity which generates local electric fields. This viola-
tion of the local charge neutrality should dramatically in-
crease the electrostatic energy of a system, the larger the
increase, the larger being the scale of the charge inhomo-
geneities. We may expect that a balance between the
finite-range interaction and the long-range Coulomb in-
teraction produces a stable inhomogeneous mesoscopic
state.

The idea that long-range Coulomb interaction may re-
sult in the formation of stable charge density waves was
suggested and analyzed in the framework of the linear-
ized Cahn-Hilliard kinetic equation by Cahn and Gupta
[11]. It has been also recently suggested [12] that the
long-range Coulomb and elastic interactions might be re-
sponsible for the formation of nanoscale structural states
[13].

In this paper, we will investigate the nonlinear dynam-
ics of morphological evolution by employing a computer
simulation technique which we recently proposed [1]. It
is based on the numerical solution of the nonlinear On-
sager equations for microscopic atomic diAusion with
respect to occupation probabilities, n (r, t ), to find one
kind of cation at the cation sublattice site r at the time t
[14]. This equation reads

dn(r t) ~ ( f) BFdt, sn(r', t) '

where L(r —r') are the kinetic coefficients proportional to
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the probabilities of elementary diffusional jumps from
site r to r' during the time unit and F is the free energy
depending on both the long-range and finite-range in-
teractions. The summation in (1) is carried out over all
cation sublattice sites of a system. In the long-wave limit,
Eq. (1) is reduced to the nonlinear Cahn-Hilliard equa-
tion. For the free energy, we employ the mean-field ap-
proximation [1]. This approximation does not introduce
any substantial error since mesoscopic phases, if they ap-
pear, are associated with the long-wave asymptotic of the
free energy which can be reduced to the conventional
Landau free energy expansion with the gradient energy
term, plus the substantially nonlocal singular term associ-
ated with the Coulomb interaction. Employing a more
accurate free energy model just changes the Landau ex-
pansion coefficient and, thus, may aAect only the scale of
the mesoscopic structure. This physical interpretation is

substantiated by the recent work of Roland and Desai
[15] who demonstrated, in their 2D computer simulation
study of an ordering system, that it is this singularity at
k =0 in the k-space representation of the Landau free en-

ergy expansion which results in the stable mesoscopic
state.

To demonstrate the dynamics of the formation of
mesoscopic states, we employ a two-dimensional (2D)
model with a square lattice. An atomic interaction with a
finite-range part which favors decomposition of a homo-
geneous disordered phase into a mixture of ordered and
disordered phases together with a long-range screened
Coulomb interaction is assumed. The finite-range in-
teraction W(r —r')p is, particularly, described by a set of
values:

W~ =1.0 eV, W2= —0.8 eV, W3= —0.55 eV, (2)
where W], W2, and W3 are first-, second-, and third-
nearest-neighbor interchange energies defined by W(r)
= Vgg(r)+ Vtrtt(r) —2V~tt(r) with V~~(r), Vtttt(r), and
V~tt(r) the pairwise interaction energies of A-A, B-B,
and A-8 pairs of atoms placed at the sites separated by a
distance r. The number of nearest neighbors and the
value of the interchange energies in the finite-range in-
teraction model are quite arbitrarily chosen with only one
requirement that they produce a two-phase field of or-
dered and disordered phases. The Fourier transform of
this finite-range interaction is

V(k) p
=2 W~ [cos2trh +cos2trl ] +4 Wq cos2trh cos2trl

+ 2 W3[cos4trh+cos4rrl], (3)
where h and 1 are related to the reciprocal lattice vector k
by k =(2tr/ap)(h, /) in which ap is the lattice parameter
ol' the square lattice. Since the minimum of V(k) falls at
kp = ( 2r t/pa) ( 2, 2 ), this finite-range interaction alone
would result in the precipitation of an ordered phase at
low temperatures characterized by the ( —,', —,

' ) superlat-
tice difTraction maximum. The mean-field phase diagram
calculated using this finite-range interaction model is

presented in Fig. 1. The diagram shows the ordering
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FIG. l. Equilibrium phase diagram calculated using the
finite-range interaction model with parameters given in (2). a
represents the disordered phase and P the ordered phase. The
thick lines are phase boundaries. The dot-dashed line is the or-
dering instability line which coincides with the left branch of
the spinodal line of the ordered phase. The dotted line is the
other branch of spinodal line of the ordered phase.

transition line of the second kind terminated by the tri-
critical point at c =0.255 and T* =0.19 below which
there is a two-phase field describing equilibrium between
a disordered phase and an ordered phase. In the phase
diagram, T* is a reduced temperature equal to kttT/

/
V(k, ) /.

The finite-range interaction (2) is competed by a
screened Coulomb repulsion given by

W(r)cQ„]=—exp
r

(4)

where rD is the screening radius, r is the distance, and 2
is a parameter which measures the strength of the long-
range Coulomb interaction. The long-wave asymptote of
the Fourier transform of (3) is V(k)p ——V(0)p+ pk
+ .

, while the asymptote for (4) is V(k)c«~
= 4trA/vp(k + kD) [kD is 2n/rD, vp is the atomic
volume, and V(k)c,„~is singular at k =0 for rD ~].

Numerical solution to the nonlinear equation (1) was
obtained using its Fourier representation where the long-
range Coulomb interaction can be easily incorporated.
The solutions, the Fourier components n (k, t ) of the oc-
cupation probabilities, are then transformed back to
n(r, t) to produce the temporal evolution of the atomic
structure and mesoscale morphologies. The reciprocal
space formulation automatically implies the application
of periodic boundary conditions.

An example of the structural transformation sequence
from a disordered phase to a mesoscopic one is shown in

Fig. 2. It was obtained by "isothermal aging" of a com-
pletely disordered state of composition 0. 175 at a reduced
temperature T* =0.0426. The corresponding point is

shown in Fig. 1 by the letter "a." A small random noise
is provided at the very beginning of the simulation. The
parameter A is chosen to be 0.25 eV and the screening
length is 10ap. The computational supercell consists of
128&&128 square unit cells. It is shown in Fig. 2 that the
first state of phase transformation is a congruent ordering
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FIG. 2. Temporal morphological evolution started from a completely disordered state with 2 =0.25 eV and composition c =0.175.
The gray level represents the diferent magnitudes of the absolute value of cg, where c is the local composition and g is the local

long-range order parameter of the ordered phase; c and tj are related to the occupation probability by n(r) =c(r)+c(r) tj(r). In this

representation, bright regions are ordered domains and dark regions are disordered phase domains. (a) t* =2.5; (b) t* =10; (c)
t* =100; (d) t* =500; (e) t* =1000; (f) t* =2000.

which produces an intermediate nonstoichiometric or-
dered single-phase state consisting of antiphase domains
[Fig. 2(a)]. This intermediate phase has approximately
the same composition as the original disordered phase
throughout the system except in regions close to the anti-
phase domain boundaries (APBs). Later the intermedi-
ate ordered state decomposes starting from the APBs
which are replaced by layers of the equilibrium disor-
dered phase [Fig. 2(b)]. This is the interesting kinetic
process which we recently predicted for precipitation of
an ordered intermetallic phase from a disordered matrix
[1]. The new feature induced by the long-range Coulomb
interaction is a dramatic change in the decomposition of
the intermediate ordered phase and the subsequent coar-
sening process. In systems with only finite-range interac-
tions, the resultant two-phase mixture will continuously
coarsen reducing its interfacial energy. Our computer
simulation demonstrates that the Coulomb interaction
stops the coarsening after the ordered particles reach a
certain size. Eventually, all ordered particles reach the
same size and form a spectacular regular pattern of a tri-
angular lattice [Fig. 2(f)]. Figure 3 shows the corre-
sponding atomic structures of the starting state [Fig.
3(a)], the intermediate single-phase ordered state [Fig.
3(b)], and the final mesoscopic state [Fig. 3(c)]. Figures
3(b) and 3(c) correspond to the 32X32 unit cells in the
lower-left corner of Figs. 2(a) and 2(f).

Our simulation also demonstrates that changing elec-
trostatic potentials (4) just affects the size of ordered par-

(5)

ticles and the distance between them. It is illustrated by
a comparison between Figs. 4(a) and 4(b). If the aver-

age composition increases, an interconnected morphology
[Fig. 5(a)] or isolated disordered particles (dark) in the
ordered matrix (bright) [Fig. 5(b)] is observed.

The typical scale of the mesoscale phase can be es-
timated by using the Ginzburg-Landau phenomenological
free energy model [I I]. The gradient energy term in the
phenomenological free energy model is gk 2 pk lc(k)l,
where p is the gradient energy coefficient, k is the wave

vector of a concentration wave, and c(k) is the Fourier
transform of the concentration heterogeneities, c(r) —c,
where c(r) is local composition and c is the average com-
position. The contribution of the long-range screened
Coulomb interaction is 2 Xk[y/(k +kD)] lc(k) l

. Min-

imizing the sum

tjj(k) = y +pk'
$2+$2

with respect to k, we obtain the minimum of ijj(k) at
[( / )I/2 k2]1/2 If ( / ) j/2) k2 [ (2 / )2]

i.e., if the screening radius rD is substantially greater than
the correlation length r, = 2tr(p/y) ', k j is a real positive
number and the typical scale for a stable mesoscale phase
will be 2tr/k j.

The microscopic representation of the phenomenologi-
cal coefficients y and p are given by

y=, /t =—
2

[V(k)+ V(k ko)]4~2 1 6
Vo 2 , k=0

FIG. 3. The atomic structures (32&&32) represented by the
occupation probabilities taken from the lower-left corner of the
pictures in Fig. 2. (a) The initial state, t* =0.0; (b) t* =2.5,
the intermediate single-phase ordered state; and (c) t* =2000,
the mesoscopic state. Completely dark circle indicates the oc-
cupation probability n(r) is 0.0 and completely bright is 1.0.

FIG. 4. The influence of the constant 2 on the size of or-
dered domains. The representation is the same as in Fig. 2. (a)
A =0.25 eV, t

* =2000; (b) A =1.0 eV, t* =1000.

1479



VOLUME 70, NUMBER 10 PHYSICAL REVIEW LETTERS 8 MARCH 1993

FIG. 5. The inhuence of average composition on the mor-

phology of the mesoscale phase. The representation is the same
as in Fig. 2. (a) c =0.25; (b) c =0.33. Compare them with Fig.
2(r).

where ko is the wave vector of the primary ( —,', —,
' ) order-

ing, A is the constant in (4), and vo is the unit cell
volume. The characteristics of the function p(k) calcu-
lated with the chosen parameters (2) are shown in Fig. 6.
It reveals an important consequence of the long-range
Coulomb contribution, a shift of the ming(k) position
from the reciprocal lattice position k =0 to a nonzero
one. If A is zero, ming(k) is at k=0 and, thus, the
decomposition of the intermediate ordered phase is a nor-
mal spinodal decomposition which would lead to the con-
ventional formation of two-phase mixture of ordered and
disordered phases followed by normal coarsening. How-
ever, at finite values of A, the k for which P is a minimum
is finite and a mesoscopic phase will be formed with the
scale X-k

The predictions following from our simulation may
have important implications to certain ceramic ionic ma-
terials. It is particularly attractive to assume that the
nanoscale ordered domain formation in relaxor ferroelec-
tric, PbMgll3Nb2i303 (PMN), as revealed in transmis-
sion electron microscopy [16-18], could be explained by
the electrostatic interaction, as is suggested in [12,13,
16-18]. In PMN, nanoscale ordered domains are formed
in a disordered matrix and those domains do not grow
during prolonged aging, which contradicts all existing
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FIG. 6. The effect of different values of 8 on the function
ts(k). p(k) is plotted against k along the [1,1] direction for
three different values of A.
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paradigms of normal coarsening kinetics. These unusual
kinetic features, however, are successfully predicted by
our computer simulation. Since the ordered domains in

PM N are so small that the screening radius of the
Coulomb interaction in this system is most likely longer
than the typical ordered domain size, the electrostatic in-

teraction between the ordered particles should play an

important role. Formation of a mesoscopic phase should
be actually a general phenomenon in ionic ceramics
where the charge imbalance due to compositional segre-
gation plays an important role.
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