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Correlated Ostwald Ripening in Two Dimensions
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We report results from an experimental study of coarsening in thin layers of succinonitrile in the pres-
ence of impurities. We quench the latter from the liquid phase to different temperatures within the
liquid-solid coexistence region thus controlling the solid area fraction ¢. As ¢ is increased from 0.13 to
0.40, liquidlike order develops among the coarsening crystals due to diffusional interactions. The latter
give rise to local correlations between the size and rate of growth of crystals within a neighborhood of
size £(¢). We study these and compare our findings with recent theoretical models of coarsening.

PACS numbers: 64.60.Qb, 64.70.Dv

During the late stages of a phase separation process,
droplets of the minority phase undergo a coarsening pro-
cess whereby small droplets shrink until they disappear
while large droplets grow at their expense [1]. This coar-
sening process, known as Ostwald ripening, was first de-
scribed theoretically within a mean-field approach by
Lifshitz and Slyozov and by Wagner (LSW) [2,3] in the
case of three dimensions. The LSW theory is valid in the
limit of near-vanishing volume fraction ¢ of the minority
phase, where droplets are widely separated and their rate
of growth is determined solely by their radius and the de-
gree of supersaturation of the majority phase. The theory
predicts (1) that the average droplet radius R grows with
time ¢ as Kt with K =const and =+ and (2) that the
distribution of droplet sizes reaches a material-inde-
pendent universal form when properly scaled. Numerous
experiments in a variety of systems including alloys and
binary liquid mixtures, as well as computer simulations
and numerical calculations, have supported the qualita-
tive character of these conclusions. However, they have
revealed that both K and the droplet size distributions are
functions of the volume fraction ¢. Moreover, the mea-
sured size distributions are typically broader than the
LSW prediction. It is by now well accepted that
diffusional interactions [4] among droplets, which lead to
interdroplet correlations, are responsible for the discre-
pancy between the LSW theory and experiment. Several
authors have developed improved theoretical models that
take into account interaction effects [5,6]. These models
involve expansions in powers of the parameter v/, whose
importance was first recognized by Tokuyama and
Kawasaki [7]. To first order in /9, interactions give rise
to two types of corrections; a direct correlation between
droplet pairs whereby small droplets are likely to be sur-
rounded by large ones, as well as a “medium polariza-
tion” in which the rate of evolution of a droplet is not
only a function of its radius R but also of the droplets
within a neighborhood of size £(¢). The models repro-
duce the broadening of experimental distributions while
predicting that correlations do not alter the value of the
LSW exponent a just as observed in experiments.
Beyond measurements of the size distribution and the
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dependence of K on ¢, experiments in three-dimensional
systems have revealed that diffusional interactions can
lead to droplet migration [8] and deformation [9]. These
theoretical ideas have been extended to the two-
dimensional case, where the presence of a screening
length &£(¢) is essential to avoid the divergence of the
solution of the diffusion equation at infinity [10,11]. ¢
denotes in this case an area fraction. To our knowledge
none of these ideas has been subjected to any experimen-
tal test.

In this paper we report results of experiments of coar-
sening of solid droplets surrounded by their melt in thin
layers of succinonitrile. The lateral dimensions of the
solid droplets are much larger than the layer thickness,
and thus our system is effectively two dimensional. Our
main goal was to observe correlation effects and study
them for different values of the solid area fraction. Suc-
cinonitrile has the following advantages: It is transpar-
ent, the surface tension of the liquid-solid interface has
very small anisotropy (~0.5%), and its melting tempera-
ture is slightly above room temperature. We used 99%
pure succinonitrile purchased from Fluka. The presence
of impurities is essential as they open up a liquid-solid
coexistence region (43-54°C) in which the solid area
fraction can be controlled by varying the temperature, as
in temperature-composition phase diagrams of binary
mixtures. Two processes are involved in the evolution of
the system: heat and impurity diffusion. By making the
latter dominant, we insure in-plane diffusion, as heat can
leak out of the system through the walls of our cells. The
experiments were carried out in 25-um-thick samples
contained in cells made out of glass slides. The thermal
conductivity of succinonitrile is 0.224 W/mK, which is
very similar to that of the glass slides used to manufac-
ture our cells. However, experiments carried out in cells
made out of sapphire, whose conductivity is more than 10
times that of succinonitrile, yielded essentially the same
results as those performed in glass-made cells, confirming
that impurity diffusion is the dominant process in our sys-
tem. During the coarsening process, the temperature of
the samples was maintained constant with a precision of
+5 mK/h. Patterns were observed by optical micros-
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FIG. 1. Snapshots of part of the coarsening system at two
different times during one of our runs with ¢ =0.40, where the
increase in the average scale and crystal deformation can be ob-
served. The images are about 2.5 mm across.

copy and video recorded for further analysis. Initial
states were produced by quenching the samples from a
high-temperature liquid phase to 0°C in order to create
many nucleation sites. The temperature was then raised
to desired values within the liquid-solid coexistence range
to achieve different values of ¢. During all runs, the solid
area fraction was constant to within 3%. There were typ-
ically 1000 crystals of contorted shape in the field of view
after a quench. In order to avoid any influence of initial
conditions and due to limits in resolution, our measure-
ments were taken when the number of crystals ranged
from 300 to 30, and thus nearly a decade in the number
of crystals was spanned.

Typical patterns observed during one of our runs are
shown in Fig. 1. The pictures correspond to ¢=0.40.
Deviations from circular shape, barely observable for
¢ =0.13, are clearly evident in the present case. In Fig. 2
we show the measured size distribution function f(R),
with R given in units of R for ¢ =0.13 and 0.40 (53 and
49°C, respectively), together with the LSW distribution
as generalized to the two-dimensional case by Rogers and
Desai [12]. Each distribution comprises measurements
on ten patterns recorded in the scaling regime. As ¢ in-
creases the distributions become flatter and broader, in
agreement with the behavior predicted by Marqusee [10],
even though direct correlations were not included in his
treatment [11]. Our measurements of the average crystal
radius R as a function of time show power-law behavior
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FIG. 2. Distribution of grain size f(R) for ¢=0.13 (empty
circles) and 0.40 (full circles). The solid line is the LSW gen-
eralized to the two-dimensional case by Rogers and Desai [12].

with exponents in the range a=0.334+0.005 for all
volume fractions studied, in accordance with the theoreti-
cal predictions [10,11].

Evidence for structure induced by spatial correlations
among crystals is shown in Fig. 3, where we plot the mea-
sured radial pair distribution function g(»), which is pro-
portional to the probability density of finding two crystals
separated by a distance . We show g(r) for ¢ =0.13 and
0.40, distances normalized by R. In measuring g(r) in
each case, ten patterns well separated in time were aver-
aged. The broad peak observed for ¢ =0.13 gives a rough
indication of the shell of nearest-neighbor crystals. For
$=0.40 this peak becomes considerably more pro-
nounced, and hence the shell of nearest neighbors be-
comes more well defined. This signature is reminiscent of
the structure induced by repulsive interactions in ordinary
fluids.

Two types of correlation effects are associated with the
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FIG. 3. Radial pair distribution function g(r) for two

different values of the area fraction ¢, 0.13 (empty circles) and
0.40 (full circles), showing the evolution of gaslike behavior for
low ¢ to liquidlike behavior at higher values of ¢. Distances are
given in units of the average radius R.
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structure described above: a direct correlation between
the size of crystals and a medium polarization correlation
between their rates of growth. According to the direct
correlation effect small (large) crystals are more likely to
be found near large (small) ones. Evidence for it was ob-
tained by dividing all crystals into two classes L and S:
those with R > R (henceforth called large) and those
with R <R (henceforth called small). We then mea-
sured the probability densities ps '(r) of finding two crys-
tals in the same class (s =s'=L or S) at a distance r, and
of finding them in different classes (s =L, s'=S or s =S,
s'=L). We plot these with empty and full circles, respec-
tively, in Fig. 4 for both ¢=0.13 and ¢=0.40. Both
probability densities have the same qualitative behavior
for ¢ =0.13, though the probability of finding small crys-
tals near large ones is slightly higher. The correlation is
manifestly stronger for ¢ =0.40, where the probability of
finding small crystals near large ones is strongly peaked
at small distances and much larger than that of finding
two nearby small or large crystals.

We turn now to medium polarization, according to
which the rate of change of the size of a crystal is deter-
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FIG. 4. Probability densities of finding two crystals both with

radii smaller or larger than R at a distance r (empty circlesl

and of one having radius smaller and the other larger than R
(fuﬂ circles), for ¢ =0.13 and 0.40. Distances are given in units
of R.

mined not only by its size but also by the influence of oth-
ers in its surroundings. The mutual influence of the
diffusion fields around two nearby crystals promotes the
accelerated shrinkage of one and growth of the other, the
rates of shrinkage and growth being larger than if both
crystals were isolated. Thus shrinking crystals are more
likely to be found in the neighborhood of growing ones
and vice versa. Medium polarization is explicitly ob-
served in our experiments when two grains with radius
smaller than R happen to be sufficiently near to one
another: One shrinks and the second grows at its ex-
pense, in spite of being smaller than R. This growth
proceeds until the first grain shrinks completely and
disappears. Shrinking of the surviving grain then ensues.
The effect is shown in a more general fashion making use
of an appealing analogy between our problem and elec-
trostatics used by Marder in his perturbative calculations
[5]. Even though the analogy is strictly valid for small
volume fractions, we still find it helpful in thinking about
our system. The analogy is based on a quasistationary
approximation to the diffusion equation. A charge is as-
sociated with each crystal, the charge being proportional
to the rate of change of the crystal’s area: ¢ =RdR/dt.
Thus shrinking (growing) crystals have negative (posi-
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FIG. 5. Radial charge-charge correlation ggq(r) as a func-
tion of distance for ¢ =0.13 and 0.40. Full circles: correlations
of charges of opposite sign; empty circles: correlations of
charges of the same sign.
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tive) charge. ¢ being a constant, the total charge of the
system is zero. According to the electrostatic analogy,
positive and negative charges screen one another, render-
ing the system locally neutral. To demonstrate the ex-
istence of medium polarization in our system we mea-
sured two charge-charge spatial correlation functions
84q'(r) =(q(0)q'(r)), with ¢’ given in units of charge per
unit area, one when sgn(g) =sgn(gq’) and the other when
sgn(g)=sgn(q'). Charges were measured from video
frames taken at close intervals, and were assumed to be
uniformly distributed along the boundary of the crystals.
In Fig. 5 we show gge'(r) for charges of the same sign
(empty circles) and charges of opposite sign (full circles),
for ¢=0.13 and 0.40. The correlation is much larger for
short distances in the case of opposite charges, and the
peak in the correlation corresponds roughly to the aver-
age nearest-neighbor distance. Opposite charges screen
one another to keep the system locally neutral. The
screening effect is much stronger for ¢ =0.40 where out-
of-phase oscillations in both correlations are observed for
distances beyond the nearest-neighbor distance, in analo-
gy with behavior observed in ionic liquids.

Finally, we estimate from our data the range &(¢)
above which correlations are screened. Following Mar-
qusee’s model [10], £ is given by

—1_ = Ki(R/&E)
e =2 f R ey (RVR

where K((x) and Ko(x) are modified Bessel functions
and f(R) is normalized as [x2f(x)dx =1 as prescribed
by Marqusee. This formula remains unchanged if direct
correlations are included [11]. Inserting our measured
distributions f(R) and solving numerically for & we find
&/R=2.20£0.02 for ¢ =0.40 and &/R=0.98 £0.01 for
¢=0.13 in agreement with Marqusee’s results. We point
out that this formula depends weakly on f(R). We also
evaluated a screening length from the decay of charge
with distance. The values obtained are within a factor of
2 larger than those obtained by Marqusee’s prescription.

In summary, our results show that diffusional interac-
tions in a two-dimensional system undergoing Ostwald
ripening give rise to liquidlike structure among the drop-
lets of the minority phase, and induce correlations be-
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tween their sizes and rates of growth. The former are
weaker than the latter. We provided explicit evidence for
these correlations, estimated their range according to ex-
isting models, and found good agreement with the
theoretical predictions. Structural effects, in particular,
should be taken into account in any future theoretical
description of large volume fraction situations. Studies of
dynamical correlations, evolving shapes, pattern morphol-
ogy at very high volume fractions, and ¢-dependent rates
of growth will be published elsewhere [13].
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port of the Charles H. Revson and Minerva Foundations.
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FIG. 1. Snapshots of part of the coarsening system at two
different times during one of our runs with ¢ =0.40, where the
increase in the average scale and crystal deformation can be ob-
served. The images are about 2.5 mm across.



