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Critical Behavior of the Pair Contact Process
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I study a nonequilibrium lattice model, the pair contact process, in which pairs of particles annihilate
with probability p or else create a particle at a vacant nearest neighbor. The model exhibits a continuous
phase transition from an active state, with an ongoing production of particles, to an absorbing state
without pairs. The model has infinitely many absorbing states. Computer simulations in 1D yielded
critical exponents consistent with directed percolation, for the first time placing a model with infinitely
many absorbing states firmly in the directed-percolation universality class.
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The study of nonequilibrium many-particle systems is
an important problem in many branches of physics,
chemistry, biology, and even sociology [1,2]. Much at-
tention has been given to nonequilibrium models exhibit-
ing a continuous phase transition from an active steady
state to a unique absorbing state (a state in which the
system is trapped). One of the major achievements in the
study of nonequilibrium phase transitions is the discovery
that a wide variety of models exhibiting this kind of tran-
sition belong to the same universality class. Among these
models the best known are probably the contact process
[3-5], Schlogl’s first and second models [6~8], directed
percolation (DP) [9-12], Reggeon field theory (RFT)
[13-16], and the ZGB (Ziff-Gulari-Barshad) model
[17-19]. The study of these and many other models
[20-26] demonstrates the robustness of DP critical be-
havior in spite of quite dramatic differences in the evolu-
tion rules of the various models. Presently there is thus
substantial evidence in favor of the hypothesis that mod-
els with a scalar order parameter exhibiting a continuous
transition to a unique absorbing state generically belong
to the universality class of directed percolation. This
DP conjecture was first put forward by Grassberger [8]
and Janssen [7] and later extended by Grinstein, Lai, and
Browne [18] to multicomponent models such as the ZGB
model.

Whereas the universality of DP critical behavior for
models with a single absorbing state seems well estab-
lished, the study of models with more than one absorbing
state is still in its very beginning. That models with more
than one absorbing state can exhibit new critical behavior
was first demonstrated by Grassberger, Krause, and von
der Twer [27] in a study of a model involving the process-
es X— 3X and 2X— 0. This model is very similar to a
class of models known as branching annihilating walks
(BAW’s) [24]. In the BAW a particle jumps, with prob-
ability p, to a nearest neighbor and if this site is occupied
both particles annihilate. With probability 1 — p the par-
ticle produces n offspring which are placed on the neigh-
boring sites. If an offspring is created on a site which is
already occupied, it annihilates with the occupying parti-
cle leaving an empty site. For n even these models have
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non-DP behavior [25] whereas the behavior for n odd is
compatible with DP [26]. Note that in both the model
proposed by Grassberger, Krause, and von der Twer and
in BAW’s with an even number of offsprings the number
of particles is conserved modulo 2. This conservation law
might be responsible for the non-DP behavior.

Models with infinitely many absorbing states [28] arise
naturally in the study of reactions catalyzed by a surface
as soon as the absorption mechanism for the various
species requires more than one vacant site. Two such
models, the dimer-dimer model [29] and the dimer-trimer
model [30], were introduced recently.

The dimer-dimer (DD) model is a model for the oxida-
tion of hydrogen on a metal surface. O, adsorption is at-
tempted with probability p and H; adsorption with proba-
bility 1 —p. Both O; and H; require a nearest neighbor
pair of vacancies and dissociate upon adsorption. Nearest
neighbor H and O react to form OH residing on a single
site, OH reacts with H (OH) forming H,O (leaving
behind one O) which desorbs immediately. In addition,
H is allowed to diffuse. When p < p,, the steady state is
an absorbing state with a mixture of adsorbed O and OH
and isolated single vacancies (clearly there are infinitely
many such states). When p> p, the lattice becomes
completely covered with H, which is thus a unique ab-
sorbing state. For p, <p <p, there is an active steady
state with an ongoing production of H,O. In the vicinity
of p; one has pyoe(p —pl)ﬂ" and p&%oun —po—pon
o« (p -'p|)ﬁ°, where p&ton==0.907 is the saturation
value of O and OH coverage. Albano [29] estimates that
Bu=Po~ % with an uncertainty of (5-10)%. These re-
sults may be seen as an indication of a new universality
class though the results could be marginally consistent
with DP behavior, ==0.586 +0.014 [10,14] for directed
percolation in (2+ 1) dimensions.

In the dimer-trimer model dimers 4, may adsorb onto
a nearest neighbor pair of vacancies and subsequently dis-
sociate. Likewise a trimer B3 may undergo dissociative
adsorption onto three nearest neighbor vacancies. A4 and
B nearest neighbors react instantly and the product 4B
desorbs. A, adsorption is attempted with probability p
and B3 adsorption with probability 1 —p. Computer
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simulations [30] on triangular lattices showed a trimer
saturated state for p <p,, a dimer saturated state for
p > pa, and an active steady state for intermediate values.
A saturated state is a configuration with only isolated
empty sites left. Such states are absorbing and there are
infinitely many of them. The transition at p; =0.3403(2)
is continuous whereas the transition at p;=0.4610(8) is
discontinuous. Critical exponents B4 and B may be
defined as pqoc(p—p)P* and pt—ppo(p—p))™,
where p3' is the saturation concentration of B at p;.
Steady-state computer simulations [30] yielded B4
=0.80(6) and Bz =0.63(5). The estimate for B is con-
sistent with DP behavior whereas the estimate for B4 is
well above the DP value. Note, however, that one expects
B4 =PBgs on general grounds (there is no reason to suspect
two critical fields [18]). Given that the 4 concentration
is very low close to p; I am inclined to trust the estimate
for Bg over the estimate for 4.

While the results for the dimer-dimer and dimer-trimer
models suggest that models with infinitely many absorb-
ing states may exhibit non-DP behavior, the accuracy of
the estimates for B is not so good as to definitely rule out
DP behavior. In this Letter I study a simple one-
dimensional model, which I call the pair contact process
(PCP). I have chosen to study this model because it is
one of the simplest models with infinitely many absorbing
states exhibiting a continuous phase transition. In the
PCP nearest neighbor particle pairs annihilate with prob-
ability p or else create a new particle at a randomly
chosen nearest neighbor provided it is vacant. Any state
without pairs is absorbing. Note that the number of such
states > 2V/2 where N is the number of lattice sites.
Any finite system will eventually become trapped in such
a state. In addition to this trivial state the system has (in
the infinite-size limit) a nontrivial (“‘active™) steady state,
with a nonzero average concentration p of pairs, when p
is sufficiently small. The region of the phase diagram in
which there is an active steady state is called the super-
critical region, as opposed to the subcritical region in
which the absorbing state is the only steady state. The
PCP exhibits a continuous phase transition from the ac-
tive to the absorbing state at a critical value p.. I will as-
sume that the concentration of pairs is the appropriate or-
der parameter. The absorbing states are the ones without
pairs, so in a sense there is a unique absorbing state from
the pair point of view. The presence of infinitely many
absorbing states on the particle level is, however, a new
feature which could lead to a new critical behavior. Note
also that the absorbing states of the dimer-dimer and
dimer-trimer models are the states without any pairs of
empty sites.

We assume that the critical behavior of quantities such
as the order parameter p (where the overbar indicates the
steady-state value) have power-law dependence close to
the critical point:

pelp.—pl?, (1)
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where B is the order parameter critical exponent. Note
that Eq. (1) holds true only in the limit of infinite system
size. As in equilibrium second-order phase transitions we
assume that the nonequilibrium system features a length
scale which diverges at criticality as

Ep)ec|p.—pl ™, (2)

where v, is the correlation length exponent in the space
direction. Any measurable quantity will depend strongly
on system size once the correlation length becomes com-
parable to the linear extension L of the system. Steady-
state simulations are also complicated by a diverging re-
laxation time near the critical point. Consequently, in or-
der to obtain reliable results close to a critical point one
has to study large systems over long times. In the ab-
sence of an independent estimate p. becomes a fitting pa-
rameter (as are the critical exponents), and thus a possi-
ble source of error.

Steady-state computer simulations may be greatly
enhanced by finite-size scaling analysis. The idea of
finite-size scaling was pionered by Fisher and co-workers
in the early 1970’s [31,32]. Here I will follow the work
of Aukrust, Browne, and Webman [21] and show how
finite-size scaling can be used in the study of nonequili-
brium phase transitions. Another very efficient method
for studying the critical behavior of models with absorb-
ing states was pionered by Grassberger and de la Torre
[16] and has since been used extensively [8,12,19,20,
22,23,26].

From the nature of the model it is clear that small sys-
tems will enter the absorbing state fairly quickly, even
when p <p.. In Fig. 1 I show the concentration of pairs
as a function of time at p=0.0771 with L =128. Each
time step equals on the average one attempted update per
lattice site and throughout I used periodic boundary con-
ditions. p(z) almost immediately reaches a reasonably
steady value somewhat obscured by large fluctuations.
After the system has reached this quasisteady state it can
spend a long time there before it finally enters the absorb-
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FIG. 1. Typical time evolution of the concentration of pairs

for L =128 at p=0.0771.
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FIG. 2. Average number of pairs in the surviving samples,
ps(p,L,t), as a function of time at p=0.0771 for, from top to
bottom, L =128, 256, 512, 1024, and 2048.

ing state. Figure 2 shows p;(p,L,t) ={p(p,L,t,5)) vs 1
for various values of L at p=0.0771. p(p,L,t,s) is the
coverage fraction for a particular sample s. The subscript
s indicates an average of only those samples which have
not yet entered the absorbing state. The number of initial
samples varied from 2000 for L =128 to 250 for
L =2048; in all cases at least 200 samples survived to the
end of the simulations. Figures 1 and 2 show that in spite
of a strong tendency to enter the absorbing state p; does
attain a well-defined value and we can thus study p;(p,L)
as a function of p and L in the critical region.

The ansatz underlying finite-size scaling is that the
various quantities depend on system size through the vari-
able |p. —plLl/v*. Thus we assume that the order pa-
rameter depends on system size and distance from the
critical point as

ps(p LY L T p((p—poL'™) 3)
such that at p.

ps(pe, L) L P )
and

f(x) < xP for x— oo, (5)

so that Eq. (1) is recovered when L— o in the critical
region. For values of p in the supercritical regime p;
should be independent of L, for L>>&(p). In the subcriti-
cal regime one expects p; to decay faster than a power
law. Thus p, may be determined as the value of p yield-
ing a straight line in a log-log plot of p; vs L. Figure 3
shows p;(p,L) as a function of L on a log-log scale for
various values of p in the critical region. The results for
ps(p,L) were obtained by performing a time average of
ps(p,L,t) in the quasisteady state. The number of time
steps ¢ and independent samples NV varied from 7 =1000,
N=25000 for L=16 to t=500000, N=100 for L
=8192. From this we clearly see that p =0.0771 is con-
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FIG. 3. Log-log plot of ps(p,L) vs L. The slope of the line is
B/v.=0.255.

sistent with a power-law behavior, whereas p =0.0770 is
supercritical and p =0.0772 is subcritical, leading to the
estimate p. =0.0771(1), where the figure in parenthesis is
the estimated uncertainty. From the slope of the critical
curve I estimate that B/v, =0.255(5). This value is in
excellent agreement with that obtained from directed-
percolation-type models B/v, =0.2524(5) using the val-
ues =0.2769(2) [33] and v, =1.0972(6) [34].

Once a precise estimate for p. has been obtained an
analysis of the data for p may yield a fairly accurate esti-
mate for f. Figure 4 is a log-log plot of p versus the dis-
tance from the critical point, p. —p, with p,=0.0771.
The results for p were obtained by averaging over 100 in-
dependent samples. The number of time steps and sys-
tem sizes varied from ¢ =5000, L =512 far from p, to
t =500000, L =8192 closest to p.. From these results I
estimate $=0.28(1), which again is in excellent agree-
ment with the value for directed percolation.

From Fig. 2 we see that the initial decay of p;, before
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FIG. 4. Log-log plot of the steady state concentration of

pairs p vs p. —p with p.=0.0771. The slope of the line is 8
=0.277.
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entering the quasisteady state, follows a power law. Scal-
ing arguments [21] show that the exponent 6 characteriz-
ing this decay is given by the relation 8 =p/v,, where v is
the correlation length exponent in the time direction.
From the results of Fig. 2 I estimate #=0.160(5). This
is in excellent agreement with directed percolation,
for which the estimate v;=1.733(1) [34] yields 6
=9.1598(3).

The results for the critical exponents of the PCP
strongly suggest that the model belongs to the DP univer-
sality class. With pairs as the fundamental entity the
PCP may be seen as having a unique absorbing state,
namely the state without pairs. Likewise one may argue
that the dimer-dimer and dimer-trimer models has just
one absorbing state, e.g., the state with no pairs of empty
sites. Though the exponent estimates are only marginally
consistent with directed percolation it does not seem im-
possible that these models also belong to the DP univer-
sality class. It thus seems possible that the DP conjecture
may be extended even to models with infinitely many ab-
sorbing states, at least as long as the absorbing states can
be characterized by the vanishing of a single quantity,
e.g., the concentration of pairs in the PCP. The non-DP
behavior of the model proposed by Grassberger, Krause,
and von der Twer [27] and BAW’s with an even number
of offsprings [25] might be contributed to the additional
conservation law (particle number conserved modulo 2)
not present in other models.
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