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Curvature Elasticity of Smectic-A Textures with Virtual Surface Singularities
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Smectic-8 textures limited by special boundaries which do not fix the layer positions but only the
direction of the layer normals should obey a simplified elasticity. This elasticity involves no layer dila-
tion but only curvature energy. We present it for smectics limited to planar cells, when all the singulari-
ties due to the absence of layer dilation are virtual. We show the possibility of anchoring transitions at
low threshold and the existence of a universal cycloid shape in the absence of external constraints. The
link with the nucleation of smectic focal conies is discussed.

PACS numbers: 61.30.Jf, 03.40.Dz

Smectic-A liquid crystals [I] are made by the piling of
liquid monolayers of rodlike molecules oriented normally
to the layers. In practice, external forces induce distorted
textures where the lamellae can be both curved and dilat-
ed. To face the general situation, one has to use a corn-
plete elastic theory specifying the position of every lamel-
la [2,3]. Arbitrary constraints on the positions of the
lamellae can produce textures where the dilation energy
compares with the curvature energy, e.g. , relaxation tex-
ture of an imposed lamellae undulation [4], distortion in-
duced by a dislocation [5], etc. Besides such positional
constraints, most boundaries favor specific lamellae
orientations. Thus, antagonistic boundaries induce prin-
cipally lamellae curvat ure. Indeed, the most familiar
smectic textures consist in curved lamellae remaining
equidistant. This constraint causes in counterpart the
creation of characteristic singular lines as pairs of ellipses
and hyperbolae. To describe these so-called "focal-conic"
textures [6-8], geometry is used instead of elasticity,
since giving the positions and geometrical parameters of
the ellipses and hyperbolae completely determines the
whole lamellar texture. Another situation is the one of
free-standing films [9] (few curved equidistant lamellae
between two air interfaces). Like mechanical thin plates
they involve only curvature energy, the minimization of
which is trivial. Recently, a new class of boundaries has
appeared, which favors only the orientation of the lamel-
lae and leaves their positions completely free (e.g. , isotro-
pic phase [10], simple liquids [11], rough interfaces [12],
etc. ). Such boundaries will induce only curvature (as in
free-standing films), but the corresponding elasticity is no
longer trivial since the lamellae can now freely intersect
the boundaries. In this Letter, we study the elasticity of
macroscopic smectic-3 plates limited by such free boun-
daries. We show that the general elasticity can be re-
duced to a pure-curvature elasticity involving directly the
boundaries interactions. This specific elasticity acts in a
continuum of new "confocal textures" with virtual sur-
face singularities that generalize the discrete, geometri-
cal, focal conies.

Some preliminary geometrical considerations on lamel-
lar textures will be useful. One can associate to any given

lamella its focal surface [13],defined as the surface gen-
erated by the family of the lamella normals, or equiva-
lently as the locus of its two centers of principal curva-
ture. It generally consists in two separated sheets (one
for each principal curvature). Usually, the lamellae con-
tinuum generates a continuum of focal surfaces. Let us
now consider the most general texture with curved cut
strictly equidistant lamellae. The whole texture can be
derived from any of its lamellae chosen arbitrarily as a
reference, by simply shifting constant distances along the
normals to this reference lamella. The common normals
to the texture are called "generators. " Such textures
have the fundamental property that the lamellae focal
surfaces degenerate into a unique surface (enveloped by
the generators). For this reason, they are called confocal
textures [3,7,8]. Their common focal surface is generally
the locus of a singularity for the smectic piling. Being too
energetical inside the bulk, it must degenerate into lines
or points [14,15] in an infinite smectic. Geometry shows
that the only confocal textures with line or point singular-
ities are the focal conies: The singularities are a pair
made up of a confocal ellipse and a hyperbola (in perpen-
dicular planes, the focus of one coinciding with the sum-
mit of the other). The lamellae assume then the shape of
the so-called "Dupin's cyclides. " When the ellipse is de-
generated to a point, the hyperbola vanishes and one ob-
tains a spherical lamellae piling [8] with its point singu-
larity. Now, for a smectic of finite size, our starting point
is that the singularities can remain surfaces since they
can be virtual, i.e., outside the physical volume of the
smectic. The smectic texture will then differ from the
usual focal-conic texture, without implying any dilation
energy. This provides a continuum of confocal textures
that will allow us to go from strict geometry to a true
elasticity.

Let us first study whether the above-described geome-
trical confocal textures are physically stable. In the usual
elastic description of smectic-A textures [2], the mole-
cules are assumed strictly normal to the lamellae. A dis-
torted state is described by the field of the normal dis-
placements u(x, y, z) of the lamellae. For small deforma-
tions, the usual elastic free-energy density reads [16]
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where o is twice the mean curvature of the lamellae and e
their relative dilation. (K/B) '—:k is usually a molecular
length [1] —30 A (far I'rom second-order phase transi-
tions). Minimization of the volumic integral of the free
energy (1) gives the smectic bulk equilibrium equation

6'u+2 8'u +8"u = 1 8'u = 18 ()4 g 2g 2 g 4 g2 g 2 g2

where (c)~~);—= n;n~BJ and (8~);=—(6;~ —n;nl)t)~ refer to the
direction of the local lamellae normal n;= 6;, +O—(t);u).
Rapid curvature variations are intrinsically equilibrated
by layer dilation. Thus, ideal confocal textures (e=o)
are strictly speaking unstable versus lamellae dilation.
Their intrinsic equilibrium dilation can be easily evalu-
ated by integrating Eq. (2) along the straight generators.
If the e found is small enough, the real texture can be
considered as "confocal. " In practice, it is reasonable to
accept as confocal any texture with both a negligible dila-
tion, i.e. , e((1, and a "passive" dilation energy, i.e.,

Bc2«Ka2.

Let us now consider a smectic-2 limited by boundaries
that the lamellae can freely intersect without feeling any
positional constraint. In the absence of any imposed
lamellae dilation, it is natural to look for an elasticity in-
volving only curvature energy in the continuum of confo-
cal textures. To simplify, we consider a smectic limited
to a planar cell Il(x,y) of thickness d (Fig. I). The exter-
nal forces are an external field EIIz coupling to the smec-
tic dielectric anisotropy h~, and two plate "anchorings'
y~ (0) and y2(0) assumed to favor only preferred orienta-
tions but to give no positional anchoring [17]. We look
for an equilibrium confocal texture assumed invariant
along y, with focal surfaces all virtual and well outside
the cell. Integrating Eq. (2) along a generator of length
l- gives s la(Ala)-, a being the curvature variations
length scale. Then condition (3) reads l « (a /k) .

Under this condition, the dilation energy can be neglected
( 2 Bs « —,

' Kcr ) and the I'ree energy per unit length

reduces to [18]

F= dr —Kcr + — E sin 0 I+1 2 1 h, c
2 2 4n i =1,2™dS, y, (0).

(5)
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2

where

0'2
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(6)

y, (0) =y;(0)+ — e'dsin'0.
4 4x

(7)

Surface and bulk terms are intimately mixed and the
external field simply renormalizes the surface energies.
Making use of a =(dO/dx)cosO and gq

= —
g~ =d/2cosO,

the free energy (6) can be expressed in terms of 0(x) and
its derivatives. Standard functional minimization, fol-
lowed by a derivative transformation [d/dx (t)/c)s)~c]
introducing the curvilinear coordinate s through da/dx
=cosO(l)cr/c)s) —cr sinO, yields the texture equilibrium
equation ('—=d/dO):

c)a jl—taneo]a2 ' =
6$ i=] 2 COSO

(8)

Our confocal texture with virtual focal surfaces is entirely
determined by the shape of one of its lamellae; it can be
equivalently parametrized by the angle 0(x) at which the
lamellae intersect the x axis (Fig. 1). From confocality,
the lamel1a curvature radius o. ' varies linearly along the
generators. Calling g the coordinate along the genera-
tors, we have cr '(x, g) =cr '(x, O) —

g, dr =dx(1
—ger)t, dcosO, d5; =dx(1 —g;a) (i =1,2), and the boun-

dary curvatures cr; (i =1,2) verify ap —a) =la~a2 and

cr~ '+cr2 ' =2cr '~t=o. Without any assumption on the
lamellae shape, the free energy (5) can be integrated
along the generators:

0
gdS, y (0)

~here

cr = [cr(a2(crt+ cr2)/2] ' '.

F'IG. l. Geometry of an arbitrary confocal texture with vir-
tual focal surfaces (drawn as cusps outside the cell). The whole
texture can be entirely deduced from one of its lamellae.

From confocality, Eq. (8) is invariant along the genera-
tors, since (Bcr/tls)/a =( —)clcr '/90 is itself invariant.
Thus, Eq. (8) originally written along the x axis is readily
the equilibrium equation of any of the lamellae [param-
etrized by 0(s)]. It expresses the balance of the torques
acting on a generator (per lamella surface unit): y/cosO
are the surface and field torques, ( —)K/(8/a') c)cr/r)s is

exactly the integral of the lamellae curvature torques
( —)K(8a/c)s ) (g), and Kl tan 0 a ~ cr2 is an additional
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torque induced at constant curvature by the variation of
the generator lengths i =d/coso. In the weak-curvature
approximation oq —cr~

——cr&&i, Eq. (8) simplifies to

Kd (cr cos 0)= g ycos 0, (10)

1

f ~ /

FIG. 2. Virtual focal surfaces degenerating into real lines as
they penetrate the smectic. If both focal sheets enter, they de-
generate into parts of conjugated conies. Once the ellipse is
completely embedded, the hyperbola cannot transform to a sur-
face outside the bulk.

which is directly integrable for any surface anchorings
and external field. In the absence of external forces, it
becomes simply 6(cr 'i)/60=0: The lamellae are not
curved at constant radius a ' (as free-standing films)
but at constant product o. 'l. The corresponding shape
is a cycloid, s(0) =A sinH, whose integration constant is

to be chosen according to the lateral boundary conditions
(here nondefined). The striking feature of the texture
equation (g) is the "nonlocal" character of the external
forces, due to the rigidity of the generators. Indeed, op-
posite anchorings y~(8) = —y2(H) and indifferent anchor-
ings y~(0) =y2(0) =0 yield the same set of solutions.
Another interesting feature is the eAect of the external
field. Expanding y;(9) —y; +y; sin 9+y; sin 0, only
the coe%cient y;

1 (usually » y; ) is renormalized by
the electrical field. Assuming bc&0, y; can be com-
pensated, which allows for second-order and first-order
texture transitions according to the sign of y; . Even
with a strong anchoring i, —:&/y —1000 A (It -5
&10 cgs) and a low ~de~-O. I, the threshold AeV, /d
—y; corresponds to a low tension V, -7 V for a 10 pm
thick cell. This value is (I,/k)' —10 times lower than
the Helfrich-Hurault [1,19] so-called "ghost" transition.
In practice, due to permeation [1], the above discussed
transitions should be slow (unless the smectic order is

melted near the boundaries [20]).
The equilibrium confocal textures may sometimes at-

tract the focal surfaces and yield the nucleation of focal
conies. First, we expect the most general confocal texture
to have tirtual surfaces degenerating into real lines as
they penetrate the smectic bulk (Fig. 2). This raises
some interesting problems. Consider in Fig. 1 the pene-
tration of a focal-surface cusp. Along the cusp generator,
since Bcr/Bs =0, we have tI o/Bs = —a 6 (cr ')/80 .

From confocality, 6 (~ ')/60 =A is a (macroscopic)
generator's constant; then t'I cr/mls = —Acr I. ntegrating
Eq. (2) up to a distance r (=cr ') to the cusp, e diverges
as —AX /r, and the stability condition (3) requires
r ~ r, —(AX) ' . Closer than r„which is a mesoscopic
distance, the texture is no more confocal and dilation will

repel the singularity (unless it is topologically required).
In practice A —100 pm gives r, —5000 A, still below op-
tical microscopy resolution. If one sheet of the focal sur-
face is forced to penetrate the bulk, it will degenerate into
a line [21]. We know from geometry [22] that the most
general surface where focal sheets are one surface and
one line (parametrized by u) is generated by the envelope
of a family of spheres centered on the line, with varying
radii r(u). Regarding the elasticity this case is more del-
icate: To define the reference lamella one needs an addi-
tional variable defining the shape of the focal line; the
saddle-splay term will generally contribute; the genera-
tors will be articulated along the line singularity and their
lengths will be complicated functions of the smectic
volume shape. Because of this articulation, the electrical
field will not simply renormalize the surface energies. If
the two focal sheets both enter the bulk, they must degen-
erate into pieces of an ellipse and its confocal hyperbola
(Fig. 2). To this degeneracy will correspond an energy
barrier of geometrical origin associated with the nu-
cleation of focal conies. Once the ellipse is completely
embedded inside the bulk, the whole texture is geometri-
cally determined, and the conies cannot transform to sur-
faces outside the bulk (unless introducing some dilation
corresponding to the classical curvature discontinuities
between domains [7]). When the ellipse is partially virtu-
al or simply lying on the interface, the transformation to
virtual surfaces is possible. This point is important as the
interfacial lamellae can be aAected, and together the in-
terfacial energy which is generally responsible for the
very existence of the focal conies [10,11].

In summary, the possible existence of boundaries pro-
ducing a smectic orientational anchoring, but not posi-
tional anchoring, yields a new class of problems. Such in-
terfaces exist naturally (e.g. , liquid mesophases) or could
be produced by suitable surface treatments (e.g. , liquid
coatings [11], controlled roughness [12], etc. ). The ex-
pected smectic textures belong to a new class of confocal
textures with virtual singularities outside the smectic
bulk, that generalize the usual focal conies. These tex-
tures can be described by a reduced set of variables; this
allows us to work out a specific elasticity that contains
only curvature energy and directly involves the external
constraints. We have explicitly derived the elastic equi-
librium equation for planar cells, when the singularities
are all virtual. We find the possibility of field-induced
texture transitions with a very low threshold and the ex-
istence of a universal shape (cycloid) in the absence of
external forces. Finally, the possibility of confocal tex-
tures with both real focal lines and virtual focal surfaces
provides a new framework to study the nucleation of focal
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conies and should yield a reinterpretation of focal conic
textures in the vicinity of free interfaces.

The author is indebted to G. Durand, I. Dozov, Ph.
Martinot-Lagarde, and G. Barbero for fruitful discus-
sions.
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