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Free-Electron Lasing without Inversion by Interference of Momentum States
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It is shown that lasing in free-electron devices can be attained without the standard population inver-

sion between the two portions of the electron momentum distribution that contribute to simulated emis-
sion and absorption, respectively. Coherent superpositions of two electronic states in appropriately
designed wigglers can strongly suppress stimulated absorption without hampering stimulated emission.
The resulting gain curve is symmetric about the emission resonance, and yields a much larger gain than
the antisymmetric gain curve of a standard free-electron laser with the same parameters.

PACS numbers: 41.60.Cr, 52.75.Ms

Free-electron lasers (FELS) owe their gain to the fact
that, in the quantum description, an electron recoils in

opposite directions depending on whether it emits or ab-
sorbs a photon with a given wave vector q. Hence, the
resonant electronic momentum 6k, for the emission of
such a photon differs from the resonant momentum Ak,
for its absorption. This leads to the gain-spread theorem
[1-4], which expresses (in the simple one-dimensional
case) the small-signal gain as the convolution of the elec-
tron momentum distribution f(k) with the difference be-
tween the probability distributions (line shapes) of emis-
sion and absorption per photon, which are centered at k,
and k„respectively. Hence, when these line shapes are
much narrower than the spread of f(k), the small-signal
gain is proportional to the "population inversion" f(k, )
—f(k, ). In the quasiclassical limit, which holds when

k, —k, is much smaller than the inverse length of the
wiggler, and the photon energy Acq is much smaller than
the electron energies E(k, t,~), the small-signal gain curve
is antisymmetric about the mean resonant momentum
Ak =6(k, +k, )/2. The resulting gain is then propor-
tional to the product of the following factors [2]: (a) the
small photon-recoil factor hcq/E; (b) the emission rate
per photon, P(q)/hcq, where P(q) is the corresponding
emission power; and (c) the derivative of the momentum
distribution at k, df(k)/dk ~t-, . In this limit, the quantum
expression for gain coincides with its classical counter-
part, which follows from the momentum bunching of the
electrons by the interaction [5,6].

The shape of the FEL gain curve and its dependence on

photon recoil and the momentum distribution of nearly
free electrons stand in sharp contrast to the corresponding
features in lasers operating between discrete electronic
states in atoms, whose gain curves are symmetric about
the atomic resonance and are nearly independent of pho-
ton recoil. In view of these fundamental differences, one
may ask if it is possible and worthwhile to implement in

FELs a mechanism analogous to that of atomic lasing

without inversion (LWI), whereby the role of population
inversion is replaced by coherence between two electronic
states [7-9]. We hope to convince the reader that the
answer is yes.

In this Letter we show, for the first time, that it is pos-

sible, in principle, to attain LWI in free-electron devices.
This mode of operation can render the gain curve sym-

metric about the emission resonance, broaden the gain

profile, and bring about strong enhancement of the maxi-

mal small-signal gain. The broadening of the gain curve
and the gain enhancement can relax the requirements on

the electron beam at lasing threshold, and thereby help
the attainment of x-ray lasing in electromagnetic wigglers
(Compton scattering from laser pump beams) [1,10,11].
In the scheme considered, the electron interacts with the
FEL signal in two different regions with different vectori-
al momenta whose amplitudes add up coherently. Like-
wise, the wiggler is characterized by a superposition of
two beams with differently oriented wave vectors. Photon
absorption from the FEL signal can then be arranged to
proceed via two interfering near-resonant channels lead-

ing to a common final state of the electron. When the
phases of the channel amplitudes make them interfere
destructively, stimulated absorption is practically elim-

inated, since the other channels of absorption are far
from resonance. In contrast, each of the corresponding
electronic states obtained by near-resonant stimulated
emission is accessed via a single channel, so that the pop-
ulation of these states is unaffected by interference. Gain
enhancement then results, because the rate of simulated
emission is similar to that of conventional FELs, whereas
stimulated absorption is strongly suppressed. We note
that two-channel interference leading to either enhanced
or suppressed population of electron-momentum states
has been proposed for the coherent control of photo-
currents in semiconductors [12] or the detection of
squeezed light [13].

Let us first review the kinematics of single-photon ab-
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sorption and emission in the ordinary noncollinear FEL
scheme [2]. Consider one of the solid lines in the para-
boloid of energy-momentum dispersion [Fig. 1(a)] mark-
ing the absorption of a signal photon with wave vector
q= mc=(ro/c)z by an electron with momentum Ak~ or hk2
and energy

E = [(hack )(2))'+m'c'] 'i'

in the presence of an optical or magnetic wiggler with
wave vector k

~
or k 2, respectively. The absorbed pho-

ton takes the electron vertically up from the E plane to
the plane of E, =E+Am. A momentum "kick" corre-
sponding to wiggler-photon emission results in a final
electron momentum,

k, i(2) =ki(2) —k i~2)+q, (2)

which must lie near the "resonant, " i.e., kinematically al-
lowed, upper circle on the paraboloid surface. The detun-
ing (momentum mismatch) d„, corresponding to the radi-
al distance of k, from this circle, can be varied by chang-
ing either one of the momenta on the right-hand side of
Eq. (2). The same considerations determine the detuning
6, of the final electron state accessed by signal-photon
emission (via one of the dashed lines) from the resonant-
momentum value

(b)

] (2) k] (2) +k 1(2) q ~ (3)

The standard gain G„ to first order in the signal inten-
sity, is proportional to the diA'erence between the transi-
tion rates for emission band absorption, convoluted with
the initial distribution of electron momenta f(k):

G, ec [sine (A, L/2) —sine (A, L/2)]f(h)dh, (4)

where L is the interaction length and &,(,&=5+ e/2, e
being determined by the diAerence between the photon
recoil in Eq. (2) and its counterpart in Eq. (3). In the
limit of small recoil eL«1, the gain profile within the
square brackets of Eq. (4) is almost antisymmetric about
h, =0, resulting in a very weak gain for a broad, nearly
symmetric f(h).

In order to improve the standard gain performance, we
arrange the electron-laser interaction to occur in two
sequential regions involving electron states ~k~) and ~kz,
and the wiggler in a superposition of k„~ and k„q modes.
In this way we can impose conditions for destructive in-
terference of the absorption channels. To this end, con-
sider Fig. 1(b), wherein an electron beam is collimated to
a width ~, ))k„' having a mean momentum 6 k i

=6 k
x [cosP i —sin t&& x]. This beam interacts in region 1,
centered at r~ =( —z,x), with a wiggler beam of width
L ~ w„and mean wave vector k„~ =k„[cos(x—0) z
—sin8x]. The nonscattered part of the electron beam
is deflected (magnetically or electrostatically) at an angle

thereby acquiring a momentum 6 k2 = 6 k [cosp z
+sinpx]. It then interacts in region 2, centered at r2
=(+z,x), with another wiggler beam of width L and
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FIG. l. (a) Kinematics of photon absorption (solid lines) and
emission (dashed lines) by two differently oriented electron and
wiggler momenta, leading to a common final state in absorption
and orthogonal states in emission. (b) Realization of this
scheme in two sequential interaction regions (1 and 2) with in
terfering scattering amplitudes into state ~k, & via absorption of
signal photon q. The required signal delay is achieved either by
a ring resonator (dashed lines for mirrors) or a four-mirror
deflector (between regions 1 and 2). (c) Feynman diagrams for
absorption into ~k & by the two constructively or destructively
interfering interaction channels (+ or —signs), and for emis-
sion, leading to orthogonal states ~k, ~& and ~k, 2&.
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k, = k~ —k„]+q=k2 —k 2+q, (6a)

mean wave vector k„2=k [cos(tt —9) z+sinHx]. The in-

teraction regions 1 and 2 are isolated as long as
2z))L ~ w, . The wiggler is represented by the vector
potential

A =y[a ~g(z+z, x —x)lk„))
+a„2g(z —z, x —x)lk 2)], (5)

where the g's are the localization functions and a
=la„((2)lexp(ia((2)) are the beam amplitudes (treated
here classically). Both wiggler beams are derived from
the same coherent source, and hence the phase diAerence
a~ —e~ is fixed. The signal, after interacting with the
electron in region 1, must be delayed by a distance D, so
that it reaches region 2 simultaneously with the electron.
This can be done in one of the following ways [Fig. 1(b)]:
(a) by enclosing both interaction regions in a ring resona-
tor for the signal, which can then make one or more
round trips in the resonator on its way between the re-
gions; (b) by dellecting the signal sideways from the z
axis and back again, by a four-mirror configuration.

Absorption of the signal photon in regions 1 and 2 will
scatter the electron into a common final state lk, ) if

+c2(//(r r2) lk2) (z )0), (8b)

where (//(r —r((2)) describe the electron-beam localization
within ~„and the phases of c]~2~ account for the propa-
gation from region 1 to region 2. Under the conditions of
Eq. (6), the absorption part of the electron state is given
by the second term in Eq. (8a), where c, ( (c,2) is the
probability amplitude for the electron to absorb the signal
photon in the first (second) region. The amplitudes c, )

and c,2 are the emission scattering amplitudes in the
respective regions. The main point is that c,2 and c, ] can
be arranged to interfere, in this scheme, which bears
analogy to atomic Ramsey fringe sc-hemes. By contrast,
c,2 and c, ] cannot interfere, because of the orthogonality
« lk, () and lk, 2& [Eq. (»]

Let us now proceed to calculate the probability ampli-
tudes for absorption (c, )(2)) and emission (c,~(2)) of a y
polarized signal photon in this scheme. The interaction
Hamiltonian can be effectively reduced to [2]

state is a sum of the incident and deflected beams,
weighted by their amplitudes c] and c2.

ll) =c](//(r r()lk~) (z (0)

which requires

sing =(k„/k)sino. (6b)

Ht = e(A, + H.c.) (p —eA„+H.c.)/my

= e (A, +H.c.)(A„+H.c.)/my,

where the signal vector potential is A, =ya, exp(iqz), p
is the electron momentum, and my is the relativistic
mass. As is well known [2], the p A term is negligible
when k((2) are nearly aligned with z (see p values below)

7
and have no y component. The rotating-wave approxima-
tion (RWA) terms A, A„and A, A„are predominant in
near-resonant emission and absorption, since their respec-
tive momentum detunings 5, and h, are much smaller
than those of non-RWA terms A, A and A,tA~, which
are detuned from resonance by —k» lh, (,)l (see be-
low).

When the condition for interference in absorption [Eq.
(6)] holds, the corresponding RWA transition probability
becomes proportional to the square of

&k, lA, A„li) =c,*(+c,*2 =a, dr[c(a„*)(//(r —r()g(r —r))+c2a„*2(//(r —r2)g(r —r2)]

This is a necessary condition for interference in absorp-
tion. By contrast, lk, () and lk, 2& in Eq. (3) are then
strongly orthogonal, with a momentum mismatch of

lke ~ ke2l = 4k„sin8 =4k sing,

whence there is no interference in emission.
Consider next the resulting state of the electron as it

passes through the FEL in Fig. 1(b). As illustrated in

Fig. 1(c), the final state of the electron lf) after interact-
ing with the signal in both regions is given by

If&=-lt&+(c.2+c., )lk, )+c,2lk, 2)+c, (lk, (). (8a)

Here the "initial" (nonscattered) part of the electron

xexp[ —i(k, —q+k](2) k„((2))r].
Absorption will be eA'ectively canceled when c)a„) = —c2a„2, where c2=c2exp[i(2z+D)q] includes the signal phase
shift along its delay path D (discussed above). By contrast, the RWA emission probability is given by a sum of two
noninterfering contributions,

P, ~ 1&k, (IA,'A. li&l'+ 1&ke21A Awli) I Ice(i + lce21'~»nc'(&, L),

~AF sin ( —,
'

A, L)/( —,
' 4, )

Gs sin [ —,
' (6 —e)L]/[ —,

' (a —e)]' —sin'[ —,
' (A+e)L]/[ —,

' (W+e)]
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as implied by Eq. (7). Thus, the cancellation of absorption does not change the emission probability P„whose line
shape is symmetric in the emission detuning 6, .

We can now write down the ratio of the absorption-free gain OAF, which is simply proportional to P„ to the standard
gain G, [Eq. (4)], evaluated for the same parameters (current density, wiggler power density, wiggler and electron mo-
menta, and interaction length),
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FIG 2. Gain profiles as a function of (a) h, L
absorption-free scheme (maximal gain is 1.0) and (b) AL for
the standard FEL (maximal gain is 0.025), using the same pa-
rameters (e =0.01).

For @=0.01, typical of the photon recoil due to hard x-

ray emission in an optical wiggler [7,8], GAF/G, =40 is
attainable at their respective maxima (Fig. 2). The gain
curve OAF is seen to be symmetric about the emission res-
onance, as opposed to the nearly antisymmetric 6, . The
resonant condition 4, =0 corresponds to the following
resonant emission frequency co„obtainable from Eqs. (I )
and (3) for y))1 and )P) =hk (sinO(/mcy«1:

co, = 2 y ck„cosO(l —h, ck /mcy) . (13)

The frequency is shifted from the resonant absorption
frequency to, [Eqs. (I) and (2)] by the amount —2h
xk y/m. Curiously, we can tune the signal to to, and
still be near the gain maximum, as long as the corre-
sponding momentum detuning

A, —2y(hk /mc) «L
The non-RWA terms (see above) would then have
h, ~ ~I ~ k I, and thus be negligible by comparison.

The predicted gain enhancement can be up to 2 orders
of magnitude. This allows the reduction, by the same
factor, of the current density I/trw, , or the wiggler power
density required for FEL action. On the other hand, our
scheme poses stringent requirements on the angular beam
spread hp, which must satisfy [Eq. (7)] yAtt & h k
xsinO/mc. Hence, we should try to work with the largest
possible k„, and thereby maximize the allowed htt. It
may therefore be advantageous to use as a wiggler an in-
tense extreme-UV coherent pulse, presently available by

processes such as high-harmonic conversion of excirner-
laser pulses in gases [14]. As an example, we can choose
a 50 eV wiggler, O~ tr/3 and y —5, corresponding to
6 co, = 2 5 keV. The required beam spread is then
Ap~ 10 /y, which is achieved by —I mm collimators
placed —50 m apart.

This erst application of the concept of LKI to FELs
may pave the way to other such schemes, which can be
based on either the quantum or the classical FEL descrip-
tion. Apart from gain enhancement, the main qualitative
consequences of this scheme are as follows: (a) The scal-
ing of the FEL gain with frequency is now determined by
the spontaneous emission rate, rather than by photon
recoil, even in the quantum regime. (b) The inhomo
geneous width of electron energies compatible with gain
can now be broader and more symmetric about the
emission resonance value, thereby relaxing the required
electron-beam monochromaticity. (c) The study of the
emitted photon statistics is expected to be of considerable
interest, in view of its strong dependence on recoil in the
quantum regime of the standard FEL [15].
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