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Nonlinear Optics of Bessel Beams
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We investigated the frequency-doubling properties of light beams whose transverse profile is given by
the zero-order Bessel function Jo(r), Bessel beams. Phase-matched second-harmonic generation in a
KDP crystal was observed at angles usually not suited for phase matching. It is thereby demonstrated
that under certain circumstances, Bessel beams can be viewed as light beams with tunable wavelength.
A variety of applications in the field of nonlinear optics is expected.

PACS numbers: 42.50.—p, 42.65.Ky, 42.79.—e

Light beams whose transverse amplitude profile is
given by the zero-order Bessel function of the first kind,
Jo(r), have recently attracted considerable interest. Dur-
nin discovered [1] that these beams do not exhibit any
spreading although their intensity is sharply peaked near
the optical axis. Since at first glance this seems to con-
tradict the uncertainty principle, the term "diAraction-
free beam" was coined and is commonly used. However,
in what follows we prefer the more technical (and more
adequate) term "Bessel beam. "

Since the first experimental realization of a Bessel
beam [2], many potential applications have been pointed
out [3,4], all utilizing the mentioned absence of spread-
ing. In contrast, no significant attention has been given
to the fact that the propagation constant of a Bessel beam
p=(k —a ) 'l differs from the wave number k =2tr/k
of a plane wave. In other words, the "wavelength" of a
Bessel beam, measured along the optical axis where the
intensity is high, differs from that of a usual (e.g. , Gauss-
ian) beam of the same frequency. In this paper, we want
to demonstrate the consequences of this feature for the
interaction of a Bessel beam with an optically nonlinear
medium.

The first Bessel beams produced experimentally were
of rather low intensity, whereas the investigation of non-
linear optical eAects requires high-intensity pump beams.
Turunen, Vasara, and Friberg [5] introduced a type of
zone plate which converts a large fraction of the light by
which it is illuminated into a Bessel beam. It consists of
an array of concentric circles, reminiscent of a Fresnel
zone plate, but with constant radius increment from one
circle to the next. Thus, it can be viewed as a circular
diAraction grating which yields, at first-order diAraction,
a cone of plane waves when illuminated with parallel
light. The interference pattern appearing within this cone
is the desired Bessel beam fl]. Its field distribution can
be calculated from Kirchoff's diffraction theory [6] which
yields, in scalar field approximation,

E (r, )=zJo(ar )e ' ' 'Wz

(r is the distance from z, the coordinate along the optical
axis). The diameter of the beam as well as its propaga-
tion constant is determined by the parameter e, which de-

P =k [1 —(afL/kf z) ] (2)

where fL and fz are the focal lengths of the lens L and
the zoom lens Z, respectively.

Let us now consider what we expect for the frequency-
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FIG. 1. Schematic of the experimental setup. ZP: zone
plate, illuminated by the expanded laser beam (Q-switched
Nd: YAG; approximately 1 mJ per pulse). BB: Bessel beam.
L: lens. Zoom: zoom lens whose focal plane coincides with the
focal plane of the lens L. SHR: second-harmonic radiation.
The KDP crystal (length 15 mm) can be rotated in a fixed cu-
vette containing index-matching fluid. Distortions of the Bessel
beam by refraction from the tilted crystal surfaces are thus

pre ven ted.

pends only on the radius increment g of the circles on the
zone plate and is given by a =2tr/g. For our experiments,
a computer-generated array of 300 concentric circles was
printed on a high-resolution laser printer (2500 dpi), and
was then photographically reduced. The zone plate ob-
tained in this way had a diameter of approximately 1 cm
and a radius increment of g =17.5 pm.

By illuminating this zone plate with parallel light from
a Q-switched Nd: YAG laser (X=1064 nm; pulse energy
= 1 mJ), a Bessel beam was produced and subsequently
imaged as indicated in Fig. 1. The lens L and the zoom
lens Z are positioned so as to make their focal planes
coincide. Consequently, a plane wave entering L will

emerge from the zoom lens as a plane wave. The cone of
plane waves generated by the zone plate is thus
transformed into another cone of plane waves behind the
zoom, with the important property that the cone angle
can be continuously varied by varying the focal length of
the zoom. Hence, the Bessel beam generated by the zone
plate is transformed by the combination of L and the
zoom into another Bessel beam whose propagation con-
stant p can be varied continuously according to
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doubling behavior of the Bessel beam in an optically
nonlinear material. Since second-harmonic generation
(SHG) is a two-photon process, the wave vector of a
second-harmonic photon is the vector sum of the wave
vectors of two incoming photons, by momentum conserva-
tion. As mentioned, the Bessel beam can be viewed as a
superposition of infinitely many plane waves whose wave
vectors lie on a cone in k space. Obviously, all pairs of
photons with mutually opposite radial components of
their wave vectors contribute to SHG on lhe optical axis,
with a wave number equal to 2P. Consequently, in addi-
tion to a cone of second-harmonic polarization from the
individual plane waves, we expect as strong second-
harmonic polarization wave traveling in the z direction,
with a wave number diA'ering from the usual value of 2k.
Furthermore, since the intensity of the second-harmonic
polarization is sharply peaked on the optical axis, the
Bessel beam behaves as a well-collimated light beam with
anomalous wave number.

At this point, we should mention the relationship be-
tween our experiment and the recently developed tech-
nique of noncollinear SHG [7], where two pump beams
are superposed at some angle on which the phase-
matching conditions depend. The important diAerence is
that in our case, SHG takes place eAectively only close to
the optical axis where the intensity has its maximum.
The peculiar nonlinear optical properties of Bessel beams
are a consequence of the combination of the anomalous
on-axis wave number and the specific spatial intensity dis-
tribution.

As is well known, eAective SHG is possible only when
the phase velocities of the fundamental and the fre-
quency-doubled radiation coincide, i.e., at the intersection

of the indicatrixes of the fundamental and the
frequency-doubled radiation [8]. In a suitable crystal
(KDP in our case), such an intersection exists at a partic-
ular angle 9pM (with respect to the crystal axes), the so-

called phase-matching angle. Since the wave number of
the on-axis second-harmonic polarization due to the
Bessel beam difters from that of a Gaussian beam, so
does its phase velocity, and we expect to observe phase
matching at an angle OPM diAerent from the usual

phase-matching angle OPM. Furthermore, since we are
able to tune the propagation constant continuously, phase
matching at a variety of angles (depending on tuning)
should be possible.

That this is indeed so is shown in Fig. 2 where the
second-harmonic intensity measured on the optical axis
behind the crystal is plotted as a function of the angular
position 0 of the crystal. Two intensity peaks are present.
The one on the right corresponds to SHG from the Bessel
beam; the one on the left (at 8 = OpM) indicates SHG
from the parallel light transmitted through the zone plate
without being diAracted. The position of the right peak
depends on the focal length of the zoom lens and thus on
the propagation constant P of the Bessel beam, thus
demonstrating the tunability of the phase-matching an-
gle. The range of tuning is limited essentially by the type
of zoom lens used in our experiment.

Figure 3 shows a plot of the quantity A:= (k —P)/k,
which can be calculated from Eq. (2), as a function of the
angle OPM of the KDP crystal at which phase-matched
SHG from the Bessel beam occurs. At phase matching,
d is proportional to the diAerence of the refractive indices
for the fundamental and the frequency-doubled light.
Therefore, the data in Fig. 3 give a "topography" of the
birefringence in the vicinity of the standard phase-
matching angle. The straight line represents a least-
squares fit to the data and has a slope of (6.6+'0.6)
&& 10 deg '. For comparison, the change in

birefringence near the phase-matching angle can be in-
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FIG. 2. SHG intensity as a function of detuning from the
standard phase-matching angle 94)M, for different focal lengths
fz of the zoom lens. The solid lines serve as guides to the eye.
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FIG. 3. The quantity 5:= (k —P)/k at which phase match-
ing occurs as a function of the angular position of the crystal.
The error bars indicate the width of the peaks in Fig. 2. The
slope of the straight line is (6.6+'0.6) x10 deg
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ferred from the ordinary and extraordinary refractive in-
dex of the crystal [8]. One obtains (5.9~0.5)&&10

deg ', in agreement with the measured value.
The demonstrated tunability of the wave number has

several potential applications in the field of nonlinear op-
tics, wherever phase-matching problems are encountered.
For instance, in new optically nonlinear materials the
usual phase-matching parameters (temperature and angle
of incidence) are not always suitable, so novel tuning pa-
rameters are desirable. Furthermore, it becomes possible
to perform parametric down-conversion in materials
which usually are not phase matchable at all [8]. Very
promising among these are, e.g. , GaAs and methyl-
nitroaniline which have a nonlinearity several orders of
magnitude larger than that of LiNb03 [9,10]. In stimu-
lated Raman scattering experiments, phase matching of
the molecular polarization wave to the infrared radiation
should be achievable, yielding a novel source of intense
infrared radiation. We are currently performing experi-
ments which investigate these possibilities.

We now want to discuss the far-field intensity distribu-
tion of the frequency-doubled radiation. Its transverse
profile is given by the Fourier transform of the SHG po-
larization in the crystal, P (r). With

JI gC

P(r, z) cc Jo(ar)e i(a' a—) z-

and P =g F. we obtain, in k space,

P"'(k„k,) ~ ~"'F[J'(«)j~(k, —2P),

(3)

F[Jo( )j
2

k„4a—k„ (5)

and will be called the eSciency function from now on.
EScient SHG will occur when the Cherenkov cone inter-
sects one of the poles of the efficiency function. The
strong pole at ~k, ~

=0 corresponds to SHG along the op-
tical axis with a wave number 2p, which is characteristic
of the Bessel beam. The weaker poles along the circle
~k, ~

=2a correspond to SHG from the individual plane
waves in the cone.

Figure 4 shows photographs of the far-field intensity
distribution for OWopM [Fig. 4(a)] and for O=opM [Fig.
4(b)]. In Fig. 4(c), the locus of the poles of F[JO (ar)j is

plotted to the same scale. The dashed circles (a) and (b)
indicate the Cherenkov cones which are visible as faint

where F[ j denotes the two-dimensional Fourier
transform and 6( . ) is Dirac's 6 function. Phase
matching will occur when there is an overlap of P with
the indicatrix of the frequency-doubled radiation. The 6
function tells us that phase matching is possible only on
the intersection of this indicatrix with the plane defined

by k, =2p. The set of k vectors belonging to such an in-

tersection forms a cone which we will call the Cherenkov
cone, in accordance with other papers in this field [11,12].
The Fourier transform of Jo(ar) is readily shown to be
given by

FI G. 4. Far-field intensity distribution of the second-
harmonic radiation. (a) No phase matching; part of the
Cherenkov cone is visible as a circle segment. (b) Phase match-
ing; the Cherenkov cone intersects the optical axis. (c) Plot of
the locus of the poles of the eSciency function (solid line and
central spot). The strongest pole lies on the optical axis. The
dashed circles indicate the Cherenkov cones from (a) and (b).

circles in Figs. 4(a) and 4(b), respectively. A plot of
several Cherenkov cones for different tuning parameters
would yield a contour map of the indicatrix of the
frequency-doubled light.

The bright spot in the center of Fig. 4(b) demonstrates
e%cient SHG of the Bessel beam in the direction of the
optical axis. It occurs when the Cherenkov cone meets
the central pole of the eSciency function. The divergence
of this central beam is approximately 1 mrad. Note that
the photograph does not correctly account for the large
difference in intensities of the on-axis and the off-axis
SHG. While on-axis SHG could be easily measured (cf.
Fig. 2), the intensity of the Cherenkov cone was below
our limits of detection.

When the propagation constant p of the Bessel beam
and the crystal angle 0 are not in accordance for phase
matching, as in Fig. 4(a), the Cherenkov cone misses the
central pole and efficient SHG does not occur. Intersec-
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tions with the pole at ~kr~ =2a correspond to SHG from
the individual plane waves and can be clearly seen as in-
tensity maxima, as in Fig. 4(b). At these points, howev-

er, conversion is comparably weak since this pole is not as
strong as the one at ~k, ~

=0.
I n conclusion, demonstrating the tunability of the

phase-matching condition for SHG from a Bessel beam,
our experiments show that under certain circumstances,
Bessel beams can be viewed as light beams with tunable
wavelength. This result is not only interesting from a
fundamental point of view; wherever phase-matching
problems are encountered in the nonlinear interaction of
two light waves of diA'erent frequency (i.e. , almost every-
where in the field of nonlinear optics), the Bessel beam
oAers an additional tuning parameter.
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