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Two-Pole Structure of the — Resonance of 5He in a Dynamical Microscopic Model
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By a realistic dynamical microscopic reaction approach to He we reproduce the empirical positions
of the two S-matrix poles associated with the ~+ resonance, and unambiguously prove that it arises
from the t+ d channel. The picture is not coherent though, unless the presently adopted o;+ n phase
shift, extracted partly from n+ p scattering data, is assumed to be incorrect. It is pointed out that
the analog resonance in Li behaves very diAerently because the shadow pole is located on another
Riemann sheet.

PACS numbers: 25.10.+s, 11,20.I m, 24.30.Cd, 27.10.+h

The J =
2 resonance of ~He at an excitation energy

of 16.8 MeV is famous for its role in primordial nucle-
osynthesis and in the production of thermonuclear energy
and of 14-MeV neutrons. The transition t+ d —+ o, +n at
this resonance is extremely strong although the coupling
arises essentially from the relatively weak tensor force. A
phenomenological analysis by Hale, Brown, and Jarmie
[1] has recently revealed that this strong transition is ac-
counted for by the presence of a so-called shadow pole,
which is a pole of the S matri~, as a function of the com-
plex energy, located on a Riemann sheet not adjacent, at
that energy, to the physical sheet [2]. Although shadow
poles currently attract much interest both in particle
physics [3] and in atomic physics [4], in nuclear physics
this is their first appearance hitherto.

While shedding light on one matter, the resort to the
shadow pole arose controversy in another: the origin of
the resonance. The aim of this Letter is to give a com-
prehensive description of the resonance, as fundamental
as it can be, and thereby settle this dispute once and for
all.

Common wisdom [5] associates this resonance with the
t+ d channel, whose threshold lies some 60 keV below the
resonance, and this assumption is in quantitative agree-
ment with Li(e, e'p)sHe(z ) experiments [6]. From the
identification of the Riemann sheet on which the shadow
pole resides, it was inferred that, on the contrary, the
resonance originates from the a + n channel [1], almost
18 MeV over the o. + n threshold. However, the sheet of
the shadow pole carries such information only in the limit
of zero coupling [2], and Pearce and Gibson [7] demon-
strated in a schematic model that the pole may move
from one sheet to another when the coupling strength
is varied. Later Bogdanova, Hale, and Markushin gave
another model example for such a pole migration [8].
These models, however, cannot be considered models of
the (cr + n, t + d) channels. For example, in the model
of Bogdanova, Hale, and Markushin [8] the only interac-
tion in the channels dubbed "t + d" and "a. + n" is the
t-d Coulomb repulsion, thus, it is a priori certain that
none of these channels can accommodate a resonance. In

fact, the resonance originates from the third channel, a
bound-state one, dubbed " He*" [9].

The origin of the resonance can only be pinned down by
a realistic dynamical description, which reproduces the
relevant experiments, and in which coupling strengths
can be artificially turned down. In this mass range the
interactions and exchanges between individual nucleons
have strong effects, which calls for a microscopic ap-
proach. In this Letter we report on microscopic reaction
calulations for the (n + n, t + d) system and a pololog-
ical analysis of this coupled-channels problem. To our
knowledge, this is the first such analysis performed on
a realistic multichannel multiparticle problem. While
settling the dispute on the nature of the resonance, we
point out a hitherto unexposed aspect: a qualitative dif-
ference between the behaviors of systems (cr + n, t + d)
and (n+ p, He+d}.

Our approach is of the resonating-group type. We
describe the internal motions of o, and t by single
08 translation-invariant oscillator shell-model configura-
tions, and that of d by a combination of three such func-
tions of different sizes, which implies three model states
[6] of the deuteron. The relative motions are represented
by sets of angular-momentum projected shifted Gauss-
ians, matched with S-matrix asymptotics [10]. The co-
efIicients are determined variationally, and the S matrix
is calculated with the Kohn-Kato formula [10].

The quantum numbers J" =
2 allow four combina-7r 3+

tions of channels, relative orbital momenta, and summed
cluster spins. In spectrosopic notation and with the ab-
breviations n =— cr + n, d —= t + d, these are ~D(n),
S(d), D(d), and D(d) The present . model goes be-

yond that of Ref. [6] in that the force now contains non-
central terms, which give rise to new couplings. One of
them, that between channels D(n) and S(d), is respon-
sible for most of the t+ d —+ a+ n transition. Together
with the excited-deuteron pseudochannels, which allow
for deuteron distortion, we thus have 10 channels cou-
pled.

The 2 sheets of the Riemann surface are distin-
guished by the signs of all Imk, , where k, is the wave
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number in channel i. The resonance being below the
thresholds of the pseudochannels, all signs correspond-
ing to these channels must be positive and will be omit-
ted. Since the thresholds of channels S(d), D(d), and
2D(d) coincide, on the sheets accessible from the physical
sheet the corresponding three k values are the same. The
sheets entering into consideration are thus fully distin-
guished by [sgn(Imk„), sgn(Imkd)], where kd belongs to
the ground-state deuteron. The physical sheet is (++),
the "conventional" resonance pole above the t+d thresh-
old is on sheet (——), and the shadow pole was found [1]
on (—+). In the limit of zero coupling the poles j be-
longing to the same resonance are at the same energy
but on different sheets, and the channel i responsible for
the resonance is distinguished by Imk( ) being negative
for all j [2, 7]. Thus, if the shadow pole did not change
sheet between zero and realistic coupling, the resonance
would be confirmed to belong to channel 0, + n.

To localize the poles of the S matrix, we generalized
the scattering formalism to complex energy. The pole

positions were determined with an iterative procedure,
which uses a set of scattering solutions at complex ener-
gies [11].

In choosing the parameters we rely on Bluge and Lan-
ganke [12, 13], who calculated astrophysical S factors in a
similar model. So, for the central term of the interaction
we employed the Minnesota force given in Ref. [14], and
the corresponding size-correct oscillator constants [14].
Since the resulting distance between the t + d and o. + n
thresholds, 19.6 MeV, somewhat difI'ers from experiment
(17.6 MeV), we fixed our energy scale to the t+ d thresh-
old, and cared about the quality of description only in
this region. We set the free space-exchange parameter
[14] to u = 0.835 [12, 13], and used the spin-orbit force
of Reichstein and Tang [15], with strength and width of
—224.8 MeV and 0.707 fm, respectively, We followed
Ref. [13) also in adopting a slightly modified version of
the tensor interaction of Heiss and Hackenbroich [16].

We concentrate primarily on the processes with en-
trance channel t + d. The elastic phase shift and the
strength [Sg„[ of the transition S(d) —+ D(n) produced
by the force specified above are the dashed curves in
Fig. 1. To improve the fit to the phase shift, we varied u
and the strength of the short-range tensor term, and the
best result, obtained with 0.811 and —112.94 MeV, is the
solid curve. The corresponding pole positions are given
in Table I. The results of Hale, Brown, and 3armie [1],
for both energy and Riemann sheet, are fully reproduced.

The pole trajectories obtained by varying the strength
of the tensor force, i.e., essentially the coupling between
channels D(n) and S(d), are shown in Fig. 2. When
the coupling is zero, the two pole energies coincide, and
the shadow pole is on sheet (+—), which proves with full
certainty that the resonance arises from the t+d channel.
In Fig. 1(a) we see that a pure t+d model does produce a
resonance. With the coupling increased, the conventional
and the shadow poles move parallel and perpendicular to
the real axis, respectively. The shadow pole at 8'(k„', k&)
does reach the axis, at that point coinciding with its con-
jugate pair at 8'*(—k„'*, —k&*) [2, 7], and, with exchanged
identities, both poles walk over to sheet (—+). This is in
accord with the scenario envisaged in Refs. [7, 8], and we
seem to understand our resonance perfectly.

Nevertheless, it can still cause a bit of a surprise. Fig-
ure 3 shows a marked disagreement in the o. + n phase
shift between the model and the only published data
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FIG. l. (a) The S3/2 t + d phase shift and (b) squared
modulus S-matrix element of transition S(d) —+ D(n) in the
10-channel model with the original potential (dashed line) and
with the readjusted potential (solid line); in a pure S3y2(t+
d) model (dotted line), and with the modified Breit-Wigner
formula (2) (dash-dotted line). The heavy dots are the A-
matrix fits of Ref. [1], taken from Refs. [1,8], which represent
the experimental data accurately [1, 17].

TABLE I. Pole positions in kev.

Riemann sheet

Phenomenological
10-channel, original
10-channel, fitted

46.97 —i37.10
41.88 —i31.78
43.51 —i37.40

' Reference [1].

(—+)
81.57 —i3.64
71.33 —i5.20
81.70 —i3.38
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FIG. 2. Trajectories of the conventional pole on sheet
(——) (solid curve) and of the shadow pole on sheets (—+)
(dotted) and (+—) (dashed curve) when the coupling is varied
between 0 and its physical value with the readjusted potential.

FIG. 3. Theoretical S3y2 o. + n phase shift calculated
with the potential best fitting t + d (full line) and with a
slight arbitrary change (dashed line). Dots: extracted from
experiment [18].

analysis we are aware of, that due to Hoop and Barschall
[18]. These data have been reproduced in Ref. [13], and
we can also reproduce the very similar phase shifts of
cr + p scattering [19]. Indeed, with a slight reduction of
the coupling strength, we can also produce a similar a+n
curve (dashed line), but, at the same time, the agreement
in t+ d breaks down.

The root of this discontinuous behavior is again to be
found in the position of the shadow pole. When reducing
the coupling strength or increasing the charge of the sys-
tem, the shadow pole is pulled back to sheet (+—). Ac-
cording to the taxonomy of two-channel resonances given
by Pearce and Gibson [7], the position of the shadow pole
strictly determines the shapes of both elastic scattering
phase shifts and when the pole crosses the real energy
axis, these phase shifts undergo violent changes; in fact,
they exchange their shapes. The shape that the shadow
pole on sheet (—+) implies for the n+ n curve is at vari-
ance with the curve of Hoop and'Barschall [18]. This,
however, does not destroy the theory because this phase
shift was in fact extracted partly from o, + p data cor-
rected for the charge difference. As we have seen, the dif-
ference in charge is enough for the shadow poles to settle
on two different Riemann sheets, and thus to yield qual-
itatively different shapes for the two o.+nucleon phase
shifts. The predicted shape of the o. + n curve is yet
to be confirmed experimentally, but the corresponding
difFerence between the t + d and 3He+d phase shifts is
observable [20].

The sensitivity of the model to details is extraordinary.
As a result of an omission of any of the minor channels
4D(d), 2D(d), or of deuteron distortion, the shadow pole
moves to sheet (+—). Thus the observed behavior of the
resonance results from an interplay of all channels. Nev-
ertheless, our conclusions do not hinge on the adopted
version of the model because, if any of these simplifica-
tions is accompanied by a readjustment of the force to

the t+ d phase shift, the original behavior is qualitatively
restored. To obtain essentially the same efFect with re-
fitted parameters, it is enough to keep the two coupled
channels D(n) and 4S(d), without distortion.

The single-channel t+d resonance in Fig. 1 looks obvi-
ously like a Breit-Wigner resonance, while the deviating
shape of the double-pole resonance indicates a breakdown
of the Breit-Wigner formula. It brings us closer to un-
derstanding the effect of the shadow pole if we derive a
modified formula for this case.

When a single-channel S matrix has a pole at
F(k) = Ep — 2I', the extended unitarity relation
S[E*(k*)]S'[S(k)] = 1 implies a zero on the physical
sheet at F*(k*) = Ep + 2I', so that the single-pole ap-
proxirnation yields the Breit-Wigner formula

~ E —Eo —-'I
S(E) —e '

z —z. + -'r'
2

with P a constant phase. In a multichannel case the zeros
of S,, are scattered at various locations. For example, the
zero of Sdg, of the two-channel problem ( D(n), 4S(d)),
that is near the physical axis can be found by applying
the unitarity relation Sgg[F*(—k„*,kd)]Sdd[F(k„, kg)] = 1

[2] to the conjugate shadow pole at 8 = 8'*(—k„'*, —k&') c
(—+). This shows that at 8'(k„', —k&) E (——), adjacent
to the physical sheet, Sqq = 0. Thus (1) is modified to

( )
—ie '~ I'g E Ep+ zI'—

Ep —Ep —z(I' —I") E —Ep ~ 2I'

where the E-independent factor is chosen to set the
residue of the conventional pole to —ie2'~ I'd [cf. (1)];
then the modulus of the residue I'g is the d-channel par-
tial width belonging to the conventional pole. Partial
widths I", can be assigned to the shadow pole similarly.

Table II shows that these partial widths agree well with

1391



VOLUME 70, NUMBER 10 PHYSICAL REVIEW LETTERS 8 MARCH 1993

Channel
Pole

D(n)
Theory Experiment Theory

S(d)
Experiment

TABLE II. Partial widths for channels D(n) and S(d)
in keV. Experiment: Ref. [1].

in nuclear forces.
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Conv.
Shadow

39.84
72.26

39.83
68.77

24.22
3163.9

25.10
2861.6

those extracted from experiment [I], thus bearing out
the relations I' g I'„+ I'g and I" g I"„+I'&, and hence
the breakdown of the probability meaning of the par-
tial widths. The dash-dotted curves in Fig. 1 show that
Eq. (2) gives an acceptable qualitative fit.

Equation (2) expresses most succinctly the role of the
shadow pole in bringing about the strong t + d + 0; + n
transition. It reveals that, for ~Sd„~ = 1 —~Sgg~ to be
close to 1 at E = Eo, the closeness of the zero of the S
matrix to the real axis (i.e. ,

I" = 0) [1] is not enough; if it
were so, all narrow Breit-Wigner resonances would cause
strong transitions. It is also necessary that the shadow
pole be displaced well enough from the conventional pole
[i.e. , (Eo —Ec) )) 0 and/or 4(I' —I") = 4I'2 )) 0].

The results can be summarized as follows. In a dy-
namical microscopic model that describes the t+d elastic
scattering and t + d ~ a + n transition in the resonance
region we have found the two poles very close to the
positions known from the phenomenological analysis [1].
The shadow pole has been confirmed to be on Riemann
sheet (—+). However, when the coupling is set to zero,
the shadow pole gets transferred to sheet (+—). This
implies that the resonance originates from partial wave

S3/Q of channel t +d. The strong t +d ~ o.+n transition
is caused by the shadow pole being close to the real axis
as well as far enough from the ordinary pole.

The observed constellation of the poles implies a char-
acteristic shape of the 0, + n phase shift as well, which
sharply contradicts the phase shift deduced with the use
of n + p data [18]. An experimental check of the n + n
phase shift would be a very stringent test of whether
we really understand the eKect of shadow poles. The
model predicts that the analogous shadow pole for the
sLi system is on sheet (+—), which gives the resonance
an utterly dissimilar appearance. While in electron-atom
collisions the shadow poles can be shifted from one Rie-
mann sheet to the other with a perturbation exerted by
strong radiation field [4], the mirror five-nucleon systems
provide a natural example for such a phenomenon. The
strong dependence, on the charge of the system, that is
caused by the changed location of the shadow pole may
give an opportunity to pinpoint charge asymmetry eKects
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