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A new framework, the variational shell model, is proposed to describe the structure of neutron-rich
unstable nuclei. An application to "Be is presented. Contrary to the failure of the spherical Hartree-
Fock model, the anomalous —,

'+
ground state and its neutron halo are reproduced with the Skyrme (SIII)

interaction. This state is bound due to dynamical coupling between the core and the loosely bound neu-
tron, which oscillates between the 2s]g2 and the ld512 orbits.

PACS numbers: 21.60.Cs, 21.10.6v, 21.60.Jz, 27.20.+n

The recent developments of radioactive nuclear beams
are opening a new rich field of nuclear physics: the struc-
ture of neutron-rich unstable nuclei. The observation of
the neutron halo [1] is an example. In this Letter, we dis-
cuss the single-particle motion of nucleons in exotic cir-
cumstances such as extremely neutron-rich nuclei.
Neutron-rich unstable nuclei are characterized by N)) Z
with N (Z) being the neutron (proton) number. In such
nuclei, neutrons occupy single-particle orbits from the
bottom up to weakly bound states in the mean potential
for nucleons. In addition, if the number of nucleons is
small, the mean potential itself may not be very static.
Thus, the shell structure of light neutron-rich unstable
nuclei can be different from that of stable nuclei, and pro-
vides various intriguing problems. One good example of
such problems is the ground state of 4'Be7, where the ra-
tio N/Z is nearly 2. The naive picture of this state is that
neutrons occupy 1s ~g2 and 1py2 completely, while 1p ~g2

holds just one neutron. The ground state J" is then ex-
pected to be 2, whereas experimentally it is known to be

[2]. Although this has been pointed out by Talmi and
Unna more than three decades ago [3], this anomaly
has remained a challenge to theories. For instance, the
Hartree-Fock (HF) approach, which normally gives a
satisfactory description of nuclei around the ground state,
has been shown to fail in this case [4]. Recently, a new
framework has been proposed to handle many-body sys-
tems containing loosely bound particles in general. In
this Letter, we present the outline of this framework,
called hereafter variation shell model (VSM), and its first
result applied to "Be. This nucleus is known by the
anomalous ground state, as stated earlier, and its neutron
halo [5]. The result of the VSM with the Skyrme SIII
interaction [6,7] nicely reproduces these exotic features,
as shown later.

In conventional shell model calculations, the single-
particle wave functions are provided by other methods
such as the harmonic oscillator potential, HF calculation,
etc. In other words, one obtains the single-particle wave
functions from a certain mean field potential, assuming
stable single-particle motion. The shell model calculation
is then carried out, in order to treat the "residual" in-
teraction between nucleons moving on such stable single-

I J;{aj)=g c; (J;{aj) I
e';; {aj). (3)

One carries out the variation for this E(J;{aj) with
respect to {aj, by searching the minimum; bE(J;{aj)1'
b{aj =0. The single-particle basis P;(r;{aj), the con-
figuration mixing amplitude c;, and the energy of the nu-
cleus E(J;{aj) are thus determined simultaneously in
the VSM.

In practical VSM calculations, the eAective nucleon-
nucleon interaction has to be chosen so that the density in
the interior region satisfies the saturation. The Skyrme
interaction [6] is useful for this purpose, and the SIII in-

particle orbits. The validity of this procedure can be
questioned, however, in certain neutron-rich unstable nu-
clei where the last neutrons (or protons) are forced to oc-
cupy loosely bound or even unbound orbits of the mean
potential.

We shall now formulate the VSM: One parametrizes
the radial part, R, of the single-particle wave function, p,
in terms of variational parameters denoted collectively by
{aj:

p;(x;{aj)=—R;(r;{aj)[Y xu]

where i stands for the index of a single-particle orbit, x
denotes symbolically all relevant coordinates, and r
means the distance from the center of the nucleus. Here
Y and u imply the spherical harmonics and spin wave
function, respectively, and are coupled to the total angu-
lar momentum j. Multinucleon wave functions are con-
structed from the single-particle bases p s:

~
W;; {aj) ee A {pi„(x~, {aj)pk, (x2, {a])pk, (x 3 {aj ). . .j

~
0),

(2)

where ~+;) is the ith Slater determinants, the k's stand
for single-particle bases forming @;, A {j denotes an an-
tisymmetrizer, and ~0) means the vacuum. One then cal-
culates matrix elements of the Hamiltonian for these
multinucleon wave functions, and diagonalizes the ma-
trix. The lowest eigenvalue with the angular momentum
J and parity n can be given as a function of {aj,
E(J;{aj),and its wave function is written with ampli-
tude c; as
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teraction [7] is actually adopted in the present work. The
SIII interaction contains, in its original form, a three-
body repulsive force, which prevents the nucleus from col-
lapsing. We take in this work a simplified but widely
used version of SIII, where the three-body term is re-
placed by a density-dependent two-body repulsive term.
This version of SIII still brings about the density satura-
tion despite its practical simplicity. Thus, the Hamiltoni-
an consists of the kinetic energy term and the SIII in-

teraction.
There are two methods for the parametrization of the

R;(r;{a})'sin Eq. (1). In the first method, a "black box"
is used for generating radial wave functions. For in-
stance, solutions of the Woods-Saxon potential can be
used by changing the values of radius, depth, diffuseness,
etc. , of the potential [8]. This method is simple and use-
ful, but appears not to be accurate enough for reproduc-
ing halo properties. We therefore use, in this work, the
second method, which is the direct variation of R; (r; [a})
in Eq. (I). For this method, we start from a variational
principle. At a local minimum, any infinitesimal varia-
tion of R; does not change the total energy. This leads us
to a set of coupled differential equations with a Lagrange
multiplier for keeping orthonormalities of the R s. These
differential equations of VSM contain terms like kinetic
energy and average potential from other nucleons in addi-
tion to other terms, for instance, those shifting nucleons
from one orbit to another, and hence show certain simi-
larities to HF equations. It is not easy, however, to solve
the VSM equation because of partial occupancies and
jumping of nucleons from one orbit to another. A numer-
ical procedure for this solution has been developed. In
the following we present its first result. Details of the
procedure and the results will be published elsewhere at
length [9].

Figure 1 shows the lowest 2 and 2 energy levels of
the "Be, obtained by experiment and from VSM. The

level is shown relative to 2 . The VSM calculation is
performed with SIII without any adjustment. The config-
uration space for —,

' is comprised of four (seven) nu-
cleons in the Is (Ip) shell, whereas one nucleon is raised
from the 1p shell to the 2s ld shell for —,'+. The isospin is
conserved. The same levels of ' C are included for com-
parison in Fig. 1.

The observed ground state of ''Be is 2, and VSM
reproduces it correctly. Moreover, the VSM reproduces
the change from ''Be to ' C where the ordering of
and 2 becomes normal. It should be remarkable that
the SIII interaction, which has been utilized for the
description of a wide variety of stable nuclei, remains use-
ful for an unstable nucleus such as "Be. It is of particu-
lar importance that, in going from ''Be to ' C, the ener-
gy of the 2 level relative to the 2 is increased in the
VSM to about the right amount. One cannot claim that
the agreement between experiment and calculation
should be perfect in Fig. 1 because SIII is designed so as
to be simple yet useful for a global description of ground-
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and near-ground-state properties.
We shall next discuss the physical mechanism responsi-

ble for lowering the 2 state in ''Be. The major com-
ponents of the lowest 2 state in ''Be can be written as

I 2 ) = @0.+ & l»in). +(2[2.+"lid'/». ]""',
where j~ and g2 are amplitudes, 0,+ and 2,+ stand for the
lowest core (i.e.,

' Be) state of given J, and
l ), means

neutron single-particle orbits. The resulting values are
g~

—0.74 and j2—0.63. Note that the VSM (experimen-
tal) value of' the 2~+ energy level of the core, ' Be, is 3.2
(3.4) MeV, and that its B(E2;0~+ 2~+) is calculated as
54 e fm with effective charges ez =1.5e and e„=0.5e
[10] in agreement with the experimental value 52 ~ 6
e fm [11]. The coupling between the two components
on the right-hand side of Eq. (4) plays an indispensable
role in ''Be in order to produce the bound —,

' state [8].
Without this coupling, the system is not bound as dis-
cussed below in the context related to the HF calculation.
The physical meaning of this coupling is that the motion
of the core surface (i.e. ,

' Be) is coupled dynamically
with the motion of the particle (i.e. , a neutron in 2s ~gq or
Id5g). It does not matter presently whether the surface
motion is vibrational or rotational. The total system then
becomes bound, and the above mechanism can be re-
ferred to as dynamical mean field. We emphasize that
the VSM includes this coupling effect in determining R;

1SC

F'IG. 1. Energy levels of "Be and ' C obtained by (a) exper-

iment, (b) VSM, and (c) HF-shell. Levels are shown relative to
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in Eq. (1), and that this coupling is precisely what was
expected when the VSM was proposed [8]. On the other
hand, the single-particle explanation is not successful as
has been pointed out by Millener and Kurath [12]. As
discussed below, if the single-particle motion is restricted
on either 2sij2 or Idsj2 (i.e. , no orbital change), the nu-
clear force does not supply su%cient binding, and thereby
the total system is left unbound. In this situation a nu-
cleon cannot complete the circle on either 2s1~2 or 1dg2 in
the classical picture.

We note that the structure of the wave function of the
anomalous ground state can be examined by g factor or
transfer reactions. The calculated value of the g factor of
the ground state is —3.0(iuiv) where the free nucleon g
factors are assumed. In the usual single-particle picture,
this is —3.8(piv), i.e. , free neutron spin g factor. The
mixing in Eq. (4) may be too strong due to SIII in the
present calculation, and the measurement of the mixing
amplitudes provides us with precious information for
modifying the efTective interaction.

We discuss brieAy the relation to the HF approach.
Figure 1 also shows the result of the so-called open-shell
HF plus shell model (HF-shell) [13]. The HF-shell
method is an extension of the usual spherical HF to
open-shell nuclei; one starts from a set of single-particle
wave functions, and carries out a shell model calculation
which produces the occupation number of each single-
particle orbit. The spherical HF calculation is then car-
ried out by using these occupation numbers as input, giv-
ing rise to a new set of single-particle wave functions.
The shell model calculation is repeated with the new
single-particle wave functions. One iterates this process
until the result is converged.

The H F-shell works well for most stable nuclei,
whereas it shows difhculties in nuclei where highest orbits
occupied by neutrons turn out to be unbound in the HF-
shell calculation. In such cases, the whole scheme breaks
down. In order to avoid this obstacle, an infinitely high
wall is introduced sometimes [4]. All nucleons are evi-
dently "bound" inside the wall. We carry out such a cal-
culation with the wall at r =20 fm. Using SIII, the ener-
gies of 2s1g2 and 1d5~2 are obtained for "Be as 0.79 and
1.96 MeV, respectively. These are positive energy solu-
tions bound by the artificial wall, and their wave func-
tions are extremely spread.

Figure 1 includes the lowest 2 and 2 energy levels
of ''Be and ' C calculated by the HF-shell. For "Be,
the HF-shell clearly fails to reproduce the anomalous
ground state, while the result is not too bad for ' C. The
latter case indicates that the HF-shell is reasonable for
stable nuclei.

We shall brieAy discuss the origin of this failure, taking
the usual HF with two-body interaction for simplicity.
The HF equation is written in the form

N

Tmi+ 2 [I j ji mI mj,ji] ei~mi I (5)j 1
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FIG. 2. (a) Density profile of the lowest —,
'+ state of "Be.

Experimental matter (hatched area), VSM matter (solid line),
and proton (dotted line) densities are shown. (b) Density
profile for lowest —,

'+ (solid line) and —,
' (dashed line) of ' C

calculated by VSM.

where T; is the kinetic term, Vj kI stands for matrix ele-
ment of a two-body interaction, e; denotes an eigenvalue,
and 6,z. means Kronecker's symbol. The two-body in-
teraction matrix elements in Eq. (5) are limited to diago-
nal ones. This limitation remains in the HF-shell calcula-
tion. If s; is a large negative number, single-particle
wave functions are determined well by HF or HF-shell.
On the other hand, if V'j j V'j j' is canceled almost
completely by T; as is the case for loosely bound orbits,
Eq. (5) does not produce optimum single-particle wave
functions because of other more significant contributions.
This is the case for 2s]~2 and 1d5g2 of ''Be, where the
oft-diagonal matrix element shifting a nucleon between
2sij2 and Idsj2 plays a crucial role as seen in Eq. (4).
The deformed HF may be better, but it assumes static
deformation. It is of interest to see the result of angular-
momentum projected deformed HF. Although a Nilsson
calculation with large deformation has not shown the in-
version of the —,

'+ and 2 states [14], the present work
and Ref. [14] are qualitatively consistent on the role of
deformation.

We now present the density profile obtained by the
VSM calculation. Figure 2 shows the matter density
profile calculated by the VSM and that measured by
Fukuda et al. [5]. One sees a reasonable agreement be-
tween them. Although the calculation is to be modified
by corrections such as center-of-mass and nucleon-size
ones, it is unlikely that such corrections change the result
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FIG. 3. Experimental (points) and calculated (line) rms
matter radius of ' Be.

drastically. We point out that the neutron halo observed
for "Be is clearly seen in the VSM. The calculation is
made with SIII without adjustment. This is in contrast to
the HF-type calculation by Sagawa [15] where the depth
of HF potential for highest orbits is adjusted individually
to adjust their separation energies. In fact, the present
calculation reproduces the neutron halo "Be without ad-
justment for the first time. The halo is primarily due to
the slowly damping tail of R; for i =2s&y2 where the radi-
al dependence is very diAerent from that in the harmonic
oscillator potential. Wave functions of other orbits, in-
cluding 1d5~2, are quite similar to those in the harmonic
oscillator potential. The halo information has been point-
ed out by Hansen and Jonson as a consequence of small
separation energy of neutron [16]. If the configuration
mixing takes place, however, one cannot relate the
single-particle wave function directly to the separation
energy of the nucleus. In the VSM, the halo arises as a
result of coherence and competition among various eA'ects

including configuration mixing.
Figure 2 shows also the density profile of ' C, where

one finds again the halo for the first 2 state. In other
words, the halo structure of the 2 state is carried over
from "Be to ' C. This can be viewed as halo universali-
ty, if one includes excited states.

The rms matter radius is calculated for some Be iso-
topes to show the anomalous radius "Be. Figure 3 shows
the result in comparison to experiment [17]. One sees
that "Be has a larger radius, and the VSM result is in

good agreement with experiment. The neutron halo in
' Be is seen also in Fig. 3 in both experiment and VSM
calculation.

The E1 transition between the first 2 and 2 states
is known to be strong in ''Be [18]. The present calcula-
tion produces a relatively strong E1 matrix element, but

does not reach the observed value [18]. The SII I interac-
tion is probably not suitable for the study of this E1, be-
cause this strong E1 transition seems to be sensitive to
subtle cancellations of several matrix elements [18]. By
the calculation of the center-of-mass kinetic energy, it is
confirmed that the mixture of spurious center-of-mass
motion is negligible for the states discussed in this work.

In summary, the VSM has been proposed as a scheme
to describe the structure of nuclei containing loosely
bound nucleons. While the VSM is almost equivalent to
HF-shell for stable nuclei, the VSM plays an indispens-
able role in some neutron-rich unstable nuclei. One of
the implications of the VSM is the dynamical determina-
tion of the single-particle wave functions, which results in
the neutron halo and anomalous ground state for ''Be.
We are currently ~orking on calculations on neighboring
nuclei, and also on improving the eA'ective interaction
suitable for unstable nUclei as well as stable ones.
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