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Physical Aspects of the Growth and Regulation of Microtubule Structures
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The growth of microtubules through the so-called dynamical instability is analyzed within a simple
theoretical model in which the polymers are nucleated by a flat surface. For an isolated microtubule the
model predicts the existence of a transition between bounded and unbounded growth. It is also shown
that this transition alters the assembly of dense structures, e.g., by drastically limiting the number of
long microtubules grown from the surface. Coupled to the microscopic biochemical control of the
growth, such physical eff'ects seem to play an important role in the regulation of the formation of cellular
structures (such as the mitotic spindle).

PACS numbers: 87.15.—v, 05.40.+j

Microtubules (MTs) are long, rigid polymers made of
tubulin —a globular protein found in eukaryotic cells [1].
They constitute an important part of the cellular scafIold
(cytoskeleton) and provide a network of "rails" for an ac-
tive intracellular transport [2,3]. MTs also play a crucial
role in cell division; during mitosis they form the mitotic
spindle, which first spatially organizes chromosomes and
which is then used to divide the chromosomes between
the two daughter cells [2,3].

Formation of a MT network or a mitotic spindle is a
fascinating phenomenon whose mechanisms only begin
to be elucidated [4]. On its very basis lies a process of
out-of-equilibrium aggregation (polymerization) called
"dynamical instability" [5]. A MT, nucleated in a homo-

geneous and isotropic solution, can under appropriate
conditions constantly switch between assembly and dis-
assembly states. This apparently random, "sawtooth" be-
havior (Fig. 1), observed both in vivo and in vitro [5,6], is

driven by the hydrolysis of GTP nucleotides bound to the
tubulin proteins (i.e. , the transformation GTP GDP)
[7]. The hydrolysis process provides the free energy
necessary for conformational changes of tubulin: of the

FIG. 1. Typical time sequence for a microtubule undergoing
the dynamical instability: (u) unbounded growth, (b) bounded
growth. The average over many microtubules with the same
dynamical parameters is shown as dotted lines. Inset: A
schematic view of the "semi-infinite" geometry chosen in this
paper.

two forms of tubulin monomers (or more precisely di-
mers) it is the GTP tubulin which polymerizes, while the
GDP tubulin prefers to stay unpolymerized or to form
small oligomers. Although the process of hydrolysis takes
place on free GTP tubulin, it is strongly accelerated for
GTP tubulin forming a microtubule; it is believed that
the bound nucleotides are quickly hydrolyzed in many ex-
tended regions of the microtubule. It seems that when
such a transformed, extended region reaches the end of
the microtubule a fast shortening (disassembly) takes
place, until the moment when new GTP tubulin may be
added from the solution and a new growth (assembly)
period starts again. If the concentration of monomers in

solution is high enough one observes a net growth of the
polymer [7]. Compared with the usual reversible poly-
merization the growth through dynamical instability
amplifies the length fluctuations, which may be very use-
ful for an efticient regulation of the formation of cellular
structures made out of MTs.

In this paper we consider some physical aspects of the
phenomenon of dynamical instability which until now has
been mainly studied from the cell biology and biochemis-
try points of view [8]. We use a theoretical model with a
very simplified, semi-infinite geometry, in which infinitely
rigid MTs grow perpendicularly to a nucleating planar
surface (Fig. 1, inset). Each MT switches randomly be-
tween the assembly state (+ ), in which it grows with the
average speed v+ proportional to the local monomer den-
sity c, and the disassembly state ( —), in which it shrinks
with the average speed v —.The frequencies of the transi-
tions between the two states, f+ —(of the "catastrophies"
from + state to —state) and f +(the "resc—ues" from
—state to + state), determine, together with v ~, v —and
the nucleation rate of the surface, v, the behavior of the
model [9-11]. We summarize now the main results ob-
tained through mean-field theories and Monte Carlo
simulations [8].

When the nucleated MTs are separately distributed,
with typical spacings I much larger than the diffusion
length, lo =D/v+ (where D is the diA'usion constant for
free tubulin), they grow independently from one another.

Q& 1993 The American Physical Society 1347



VOLUME 70, NUMBER 9 PH YSICAL REVIEW LETTERS 1 MARCH 1993

Neglecting concentration variations in the process of as-
sembly and disassembly of MTs, we can write the follow-

ing stochastic equations for the time evolution of the
probability densities of growing, p+, and shrinking, p —,
polymer tips:

a,pi = fi—pi+f, p —via, pi,
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These equations can be solved analytically with appropri-
ate boundary conditions (e.g., all microtubules having
zero length at t =0). The main result is the prediction of
a sharp transition or a threshold between an unlimited or
"unbounded" growth, with the average speed J)0 and a
steady state or "bounded" growth, characterized by a
well defined MT length distribution with J=O (Fig. 1)
[11]. The transition takes place for v fi —=—vif i-
and thus can be reached by varying any of the four pa-
rameters vi, v —,f+-, or f i. Sinc-e the dynamical pa-
rameters depend in general on the GTP-tubulin concen-
tration c, one can reach the threshold also by crossing
some critical value of the monomer density, c =c„. The
precise c dependence of the dynamical parameters has not
yet been firmly established [12]. If one assumes for in-
stance the simplest scenario in which vi and f i depend
linearly on c, while v —and f+ —are c independent, f +
—= roc, vi=uic, one obtains c„=(fi-v—/coui)'i. [n
the steady state the distribution of MT lengths L is ex-
ponential with the mean

(L ) = v i v —/(v fi —v if— +), —
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FIG. 2. (a) Average densities of monomers, c(z) (upper
curves), polymer tips, p(z) =p+(z)+p —(z) (middle curves),
and polymer fibers, p(z, t) (lower curves), as functions of the
distance z from the nucleating surface. The densities of mono-
mers and of polymer tips shown here are obtained through nu-
merical solutions of the mean-field equations, while the polymer
densities are the results of Monte Carlo (MC) simulations,
averaged over 10 runs [for "complementary" curves see (b)].
The values of the parameters are co=0.05; D =0.17; v —=0.05;fi —=0.0005 (mean field) or 0.0002 (MC); co=0.15, while in
each set the three curves correspond to r =(0.6, 0.8, and
1) &&105 MC steps. c* and p indicate constant density solu-
tions that separate the two MT subpopulations. (b) Scaling
solutions for monomer and polymer densities. Monomer densi-
ties c(z) are obtained through the MC simulations; polymer
densities p(z) are obtained through the numerical solutions of
the mean-field equations [see (a)]. The values of the parame-
ters are as in (a) with t,„=1 x 10 MC steps. The dotted lines
show the analytical solutions obtained for t

and in the unbounded growth region the average length
increases as (L) =Jt, where

J= (t +f + —v f+ )/f+ -+f +-) o,---
while the distribution approaches asymptotically a Gauss-
ian of width s(D,rrt) ', where

Den =f +f+ (v++ v )-'(f +—+f+ —)-—
The presence of the sharp transition provides a very

efficient mechanism of the regulation of MT structures:
By varying only slightly the effective parameters of the
dynamical instability, the cell (or more precisely the en-
zymes controlling the cell cycle) may change the distribu-
tion of polymer lengths [11,13]. The relevance of such a
mechanism for mitotic MTs has indeed been demonstrat-
ed in recent experiments [11].

The existence of a transition between the bounded and
unbounded growth also strongly influences the MT be-
havior for I ~ lD. To see this it is useful to consider first
the case of the irreversible growth in the same "semi-
infinite" geometry [8,14-16]. In this case, the growing
rigid polymers leave a region depleted of monomers
behind their advancing tips. The main consequence of
the depletion is a progressive slowing down of the growth
and formation of a wide distribution of the polymer den-

sity p, with all lengths present [up to the maximal length,
((t) =v+t] [8,16]. This relatively simple behavior can be
contrasted with the case of polymers growing through
dynamical instability, where the effect of the depletion
can be much more drastic (Fig. 2). In this case, provided
the initial concentration c(z) =cp lies above c„, some
polymers enter unbounded growth, creating again a re-
gion depleted of monomers. However, since near the sur-
face the local concentration decreases below c„, any fur-
ther unbounded growth from this region becomes in prac-
tice impossible. The result is a formation of two subpo-
pulations of MTs [Fig. 2(a)]: an eA'ective]y growing
"packet" [with lengths between pl (t ) =J(c*)t and
&2(r) =J(cp)t] and the rest of MTs assembling and
disassembling close to the surface [17]. The relative
number n* of MTs in the packet which escapes from the
surface depends weakly on the exact initial conditions;
however, it seems that for co c„, n* approaches zero
with a more universal, power-law dependence (Fig. 3). It
is interesting to notice that this unusual growth
phenomenon can also be viewed as an "autoregulation"
mechanism: The growing ensemble of MTs limits its own
growth through the depletion of monomers which it
creates.
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FIG. 3. The number of polymers nucleated from the unit
area of the surface and growing through dynamical instability,
n* =bp*, as a function of the dynamical parameter f+ —,at the
approach to a critical value f+ — f+ —,„. (Stars: parameters
as in Fig. 2; circles: co=0.05, D =0.5, v —=0.08, r0=0. 1.)

We now address some quantitative issues related to the
last results. Neglecting fluctuations in the process of as-
sembly and disassembly of the MTs and assuming that
the only density variations are along the z axis (perpen-
dicular to the nucleating surface) we can write the one-
dimensional mean-field equations [generalizing Eqs. (1),
(2)] for the time evolution of the probability densities of
growing [p+(z)] and shrinking [p —(z)] polymer tips as
well as that of the monomer density c(z):

Btp+ = f~ —p~+f ~p — 9~8~(cp+),

r)ip =+f+ pi f +p +—v tl, p

Btc = v+pg+DB«c,

(3)

(4)

where we have put the microscopic length scale b (the
size of a protein) equal to 1. The polymer density p(z) is

related to p+(z) and p —(z) through p~+p —= —B,p.
In writing the above equations we have neglected the
effect of (slow) regeneration of the disassembled GDP tu-
bulin to active GTP tubulin [8]. This last process in-

volves short curved oligomers made out of GDP tubulin
[7], which, however, seem not to participate in the growth
phenomenon itself. We have therefore neglected their
presence. At the nucleating surface we assume simple
boundary conditions:

r), CIA-o =0t~ &t& = v+p+ Iz=o+ v p I, =o,
(6)

tt+p~I~ o =vs,

where s is the density of free nucleation sites and v is the
nucleation rate. These equations can be solved through
standard numerical methods [8]. In addition, in order to
verify that the presence of thermal fluctuations does not
alter the main conclusions of the mean-field theory we
perform on-lattice Monte Carlo (MC) simulations with
the Metropolis algorithm [8]. For the total number of
monomers N ~ 4 & 10 and the (simple-cubic) lattice

8 x8 x 1708, with 8 =20b, we perform simulations of up
to 10 MC steps, producing the maximal polymer lengths
of the order of 1408 without alternating significantly the
monomer density co in the region far away from the sur-
face.

The influence of the bounded-unbounded growth tran-
sition, described above for an isolated MT, is clearly ob-
served in the solutions of the full set of Eqs. (3)-(6) for
MTs interacting through the diffusion field. Figure 2(a)
depicts the formation of liat regions c(z) =c* and p(z)
=p* separating two subpopulations of the MTs: those
who "escaped" from the surface before the depletion had
developed and those who were trapped in its vicinity. The
time of separation of these two subpopulations diverges at
the approach of c„. The escaping MTs form a packet
[Fig. 2(a), middle curves] whose position as well as width
grows linearly with t. In this linear region, for large
enough t, we can obtain solutions of the mean-field equa-
tions in a simple scaling form. Indeed, with y—=zt 'u+ ',
the density profiles can be written as

c(y, t) = —,
' Iy+[y'+4(c,'„+f~ cu 'y)]'t'I

and

p(y, t) =(co+c,', )/co —[c(y,t)'+c,', ]/c(y, t) .

Figure 2(b) shows that the mean-field solutions approach
these asymptotic forms for large t. The scaling solutions
in the linear regimes match the constant boundary values
on the large-z side, and the plateau regions on the other.
Figure 3 shows that near the transition one observes a
power-law behavior: e.g. , n* rx(f~ — f~- „)~,—where

q =4.8~0.3. The value of this exponent does not seem
to depend on the initial conditions or the values of physi-
cal parameters, such as D (Fig. 3).

What is the relevance of the physical phenomena de-
scribed here to the cellular process? Recent experiments
made in mitotic extracts have shown that the MT struc-
tures are indeed regulated through the local, biochemical
modification of the dynamical instability parameters
[11,13]. For instance, the enzymes called cyclin-B associ-
ated kinases, which become active during mitosis, may in-
crease f+ —severalfold and in this way shorten drastically
the average length of MTs (nucleated froin the surface of
centrosomes). Even more surprisingly [11],it seems that
the cell may use the transition (threshold) between the
unbounded and bounded growth to go from nonmitotic to
mitotic structures. Whether the additional autoregula-
tion mechanism through diA'usive eA'ects described above,
which limits the density of growing microtubules, is im-
portant in cells (compared for example to the biochemical
regulation of the nucleation properties of the centrosome)
remains for the moment an open question. From the
theoretical point of view one needs to extend our analysis
to a spherical geometry, more appropriate for the mitosis
problem [18]; more experiments dealing quantitatively
with nucleation on centrosomes are also necessary. How-
ever, the results of the simple model presented here show
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that the collective, stochastic phenomena play an impor-
tant role in cellular assembly processes such as mitosis.
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