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Long-Range Anticorrelations and Non-Gaussian Behavior of the Heartbeat
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We find that the successive increments in the cardiac beat-to-beat intervals of healthy subjects
display scale-invariant, long-range anticorrelations (up to 10 heart beats). Furthermore, we find
that the histogram for the heartbeat intervals increments is well described by a Levy stable distribu-
tion. For a group of subjects with severe heart disease, we find that the distribution is unchanged,
but the long-range correlations vanish. Therefore, the different scaling behavior in health and disease
must relate to the underlying dynamics of the heartbeat.

PACS numbers: 87.10.+e

Scale-invariant properties in biological systems have re-
ceived much attention recently [1,2]. The absence of char-
acteristic length (or time) scales may confer important
biological advantages, related to adaptability of response
[2]. In this Letter, we study scale-invariant properties of
the human heartbeat time series, the output of an inte-
grative control system. Traditionally, clinicians describe
the normal electrical activity of the heart as "regular si-
nus rhythm. " However, cardiac interbeat intervals fiuc-
tuate in a complex, apparently erratic manner in healthy
subjects even at rest. Analysis of heart rate variability
has focused primarily on short time oscillations associ-
ated with breathing (0.15—0.40 Hz) and blood pressure
control ( 0.1 Hz) [3]. Fourier analysis of longer heart
rate data sets from healthy individuals typically reveals
a 1/f-like spectrum for frequencies ( 0.1 Hz [4—6]. How-
ever, the very long-time correlation properties of physio-
logic heart rate time series and alterations of these cor-
relations in diseased conditions remain uncharted.

Our analysis is based on the digitized electrocardio-
grams of beat-to-beat heart rate fluctuations over very
long time intervals (up to 24 h = 10s beats) recorded
with an ambulatory monitor. The time series obtained
by plotting the sequential intervals between beat n and
beat n + 1, denoted by B(n), typically reveals a com-
plex type of variability. The mechanism underlying such
fluctuations is related to competing neuroautonomic in-
puts. Parasympathetic (vagal) stimulation decreases the
firing rate of pacemaker cells in the heart's sinus node;
sympathetic stimulation has the opposite effect. The
nonlinear interaction (competition) between these two
branches of the involuntary nervous system is the postu-
lated mechanism for much of the erratic heart rate vari-
ability recorded in healthy subjects [2], although nonau-
tonomic factors may also be important.

To study these dynamics over large time scales, we
pass the time series through a digital filter that removes
fluctuations of frequencies ) 0.005 beat ~, and plot the
result, denoted by BL,(n), in Fig. 1. We observe a

more complex pattern of fluctuations for a representa-
tive healthy adult [Fig. 1(a)] compared to the "smoother"
pattern of interbeat intervals for a subject with severe
heart disease [Fig. 1(b)]. These heartbeat time series
produce a contour reminiscent of the irregular landscapes
that have been widely studied in physical systems.

To quantitatively characterize such a "landscape, " we
introduce a mean fluctuation function F(n), defined as

F(n)—:~BL,(n'+ n) —BI.(n') ~,

where the bar denotes an average over all values of n'.
Operationally, this is equivalent to (i) taking a set of
calipers set for a fixed distance n, (ii) moving the begin-
ning point sequentially from n' = j. to n' = 2, etc. , and
(iii) calculating the quantity ~BI.(n'+ n) —Bl, (n')~ for
each value of n', and (iv) averaging all of the calculated
quantities to obtain F(n) [?]. Since F(n) measures the
average difference between two interbeat intervals sepa-
rated by a time lag n, F(n) quantifies the magnitude of
the fluctuation over different time scales n.

Figure 1(c) is a log-log plot of F(n) vs n for the data
in Figs. 1(a) and 1(b). This plot is approximately linear
over a broad physiologically relevant time scale (200—4000
beats) implying that

F(n) n . (2)

We find that the scaling exponent o. is markedly differ-
ent for the healthy and diseased states: For the healthy
heartbeat data, n is close to 0, while a is close to 0.5
for the diseased case. It is interesting to note that
a = 0.5 corresponds to the well-studied random walk
(Brownian motion), so the low-frequency heartbeat fiuc-
tuations for the diseased state can be interpreted as a
stochastic process, in which case the interbeat increments
I(n):—B(n+ 1) —B(n) [8] are uncorrelated for n ) 200.

One immediate question is whether the marked differ-
ences in scaling properties shown in Figs. 1(a) and l(b)
are simply related to different statistical properties of
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I(n) for the normal and diseased cases. We find that
I(n) for the two time series in Figs. 1(a) and 1(b) have
virtually identical histograms, and can be well described
by a Levy stable distribution (see Fig. 2):

OO

P(I, Q, p) = — exp( —pq~) cos(qI)dq, (3)

with @ = 1.7 and p ) 0 [9]. Since the histograms of the
increments are the same for both normal and diseased

FIG. 1. The interbeat interval Br, (n) after low-pass filter-
ing for {a) a healthy subject and (b) a patient with severe
cardiac disease (dilated cardiomyopathy). The healthy heart-
beat time series shows more complex fiuctuations compared
to the diseased heart rate Buctuation pattern that is close to
random walk ("Brownian" ) noise. (c) Log-log plot of F(n) vs
n. The circles represent F(n) calculated from data in (a) and
the triangles from data in (b). The two best-fit lines have
slope n = 0.07 and n = 0.49 (fit from 200 to 4000 beats).
The two lines with slopes o. = 0 and n = 0.5 correspond to
"1/f noise" and "Brownian noise, " respectively. We observe
that F(n) saturates for large n (of the order of 5000 beats),
because the heartbeat intervals are subjected to physiologi-
cal constraints that cannot be arbitrarily large or small. The
low-pass filter removes all Fourier components for f & f, .
The results shown here correspond to f, = 0.005 beat ', but
similar findings are obtained for other choices of f, & 0.005.
This cutoff frequency f is selected to remove components of
heart rate variability associated with physiologic respiration
or pathologic Cheyne-Stokes breathing as well as oscillations
associated with baroreflex activation (Mayer waves).

0

I / S.D.

FIG. 2. The histogram of I(n) for the healthy (circles)
and diseased (triangles) subjects shown in Fig. 1. P(I) is
the probability of finding an interbeat increment in the range
[I—AI/2, I+AI/2] To faci.litate comparison, we divide the
variable I by the standard deviation (S.D.) of the increment
data and rescale P by P(0). In Levy stable distributions, @ is
related to the power law exponent describing the distribution
for large values of the variable, while the width of the distri-
bution is characterized by p, Since we have rescaled I by the
width, g is the only relevant parameter. Both histograms are
indistinguishable and are well fitted by a Levy stable distribu-
tion with g = 1.7 (solid line). The dashed line is a Gaussian
distribution, which is a special case of a Levy stable distribu-
tion with g = 2. Although the second moment diverges for
a Levy stable distribution, for a finite sample the second mo-
ment remains finite. Similar fits were obtained for eight of the
ten normal subjects and all ten subjects with heart disease.
The slow decay of Levy stable distributions for large incre-
ment values may be of physiological importance and relate to
the dynamics of the system.

conditions, the different scaling patterns in health and
disease [Fig. 1(c)] must relate to the ordering of these
increments, i.e. , to the correlations between the length
of successive increments produced by the underlying dy-
namics of the heartbeat.

To investigate these dynamical differences, it is help-
ful to study further the correlation properties of the time
series. To this end, we choose to study I(n) because it is
the appropriate variable for the aforementioned reason.
Since I(n) is stationary, we can apply standard spec-
tral analysis techniques [10]. Figures 3(a) and 3(b) show
the power spectra SI(f), the square of the Fourier trans-
form amplitudes for I(n), derived from the same data
sets (without filtering) used in Fig. 1. The fact that the
log-log plot of SI(f) vs f is linear implies

(4)

The exponent P is related to n by P = 1 —2n [ll]. Fur-
thermore, P can serve as an indicator of the presence and
type of correlations: (i) If P = 0, there is no correlation in
the time series I(n) ("white noise"). (ii) If —1 & p & 0,
then I(n) is correlated such that positive values of I are
likely to be close (in time) to each other, and the same
is true for negative I values. (iii) If 0 & p & 1, then I(n)
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is also correlated; however, the values of I are organized
such that positive and negative values are more likely to
alternate in time ("anticorrelation" ) [11].

For the diseased data set, we observe a flat spectrum
(P 0) in the low-frequency region [Fig. 3(b)] confirming
that I(n) are not correlated over long time scales (low
frequencies). Therefore, I(n), the first derivative of B(n),
can be interpreted as being analogous to the velocity of a
random walker, which is uncorrelated on long time scales,
while B(n)—corresponding to the positi on of the random
walker —are correlated. However, this correlation is of a
trivial nature since it is simply due to the summation of
uncorrelated random variables.

In contrast, for the data set from the healthy subject
[(Fig. 3(a)], we obtain P 1, indicating nontrivial long-
range correlations in B(n)—these correlations are not the
consequence of summation over random variables or arti-
facts of nonstationarity. Furthermore, the anticorrelation
properties of I(n) indicated by the positive P value are
consistent with a nonlinear feedback system that "kicks"
the heart rate away from extremes. This tendency, how-
ever, does not only operate on a beat-to-beat basis (lo-

10
f [beat 'l

FIG. 3. The power spectrum Sl(f) for the interbeat inter-
val increment sequences over ~ 24 h for the same subjects in
Fig. 1. (a) Data from a healthy adult. The best-fit line for
the low-frequency region has a slope P = 0.93. The heart rate
spectrum is plotted as a function of "inverse beat number"
(beat ) rather than frequency (time ) to obviate the need
to interpolate data points. The spectral data are smoothed
by averaging over fifty values. (b) Data from a patient with
severe heart failure. The best-Gt line has slope 0.14 for the
low-frequency region, f ( f, = 0.005 beat . The appear-
ance of a pathologic, characteristic time scale is associated
with a spectral peak (arrow) at about 10 beat (corre-
sponding to Cheyne-Stokes respiration).

cal effect) but on a wide range of time scales. To our
knowledge, this is the first explicit description of long-
range anticorrelations in a fundamental biological vari-
able, namely, the interbeat interval increments.

To test for statistical significance, we analyzed data
from two different groups of subjects: ten adults with-
out clinical evidence of heart disease (age range: 32—64
yr, mean 44) and ten adults with severe heart failure (age
range 22—63 yr, mean 54). Data from patients with heart
failure due to severe left ventricular dysfunction are likely
to be particularly informative in analyzing correlations
under pathologic conditions since these individuals have
abnormalities in both the sympathetic and parasympa-
thetic control mechanisms [5] that regulate beat-to-beat
variability. Previous studies have demonstrated marked
changes in short-range heart rate dynamics in heart fail-
ure compared to healthy function, including the emer-
gence of intermittent relatively low-frequency ( 1 cy-
cle/min) heart rate oscillations associated with the well-
recognized syndrome of periodic (Cheyne-Stokes) respi-
ration, an abnormal breathing pattern often associated
with low cardiac output [5]. This pathologic, characteris-
tic time scale is indicated by a vertical arrow in Fig. 3(b).

For the healthy subjects, we observe the following
exponents for the cardiac interbeat interval time series
(mean value + standard deviation): n = 0.19 + 0.05 and
P = 1.01 + 0.16. For the group of heart failure subjects,
we find that a = 0.41 + 0.08 and P = 0.54 + 0.25, both
significantly difFerent from normal [12]. The exponent n
is less than 0.5 for the heart failure patients since patho-
logic dynamics may only transiently operate in the ran-
dom walk regime or may only approach this extreme state
as a limiting case [Fig. 1(b)]. We obtained similar results
when we divided the time series into three consecutive
subsets (of 8 h each) and repeated the above analy-
sis. Therefore our findings are not simply attributable to
diferent levels of daily activities.

Our finding of nontrivial long-range correlations in
healthy heart rate dynamics is consistent with the ob-
servation of long-range correlations in other biological
systems that do not have a characteristic scale of time
or length [1,2, 13]. Such behavior may be adaptive for at
least two reasons. (i) The long-range correlations serve as
an organizing principle for highly complex, nonlinear pro-
cesses that generate fiuctuations on a wide range of time
scales. (ii) The lack of a characteristic scale helps prevent
excessive mode locking that would restrict the functional
responsiveness of the organism. Support for these related
conjectures is provided by observations from severe dis-
eased states such as heart failure where the breakdown of
long-range correlations is often accompanied by the emer-
gence of a dominant frequency mode (e.g. , the Cheyne-
Stokes frequency). Analogous transitions to highly peri-
odic regimes have been observed in a wide range of other
disease states including certain malignancies, sudden car-
diac death, epilepsy, and fetal distress syndromes [2].

The complete breakdown of normal long-range corre-
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lations in any physiological system could theoretically
lead to three possible diseased states: (i) a random walk
(Brownian noise), (ii) highly periodic behavior, or (iii)
completely uncorrelated behavior (white noise). Cases
(i) and (ii) both indicate only "trivial" long-range corre-
lations of the types observed in severe heart failure. Case
(iii) may correspond to certain cardiac arrhythmias such
as fibrillation. More subtle or intermittent degradation
of long-range correlation properties may provide an early
warning of incipient pathology. Finally, we note that the
long-range correlations present in the healthy heartbeat
indicate that the neuroautonomic control mechanism ac-
tually drives the system away from a single steady state.
Therefore, the classical theory of homeostasis, according
to which stable physiological processes seek to maintain
"constancy" [14], should be extended to account for this
dynamical, far from equilibrium, behavior.
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