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Short-Time Motion of Colloidal Particles: Numerical Simulation via a Fluctuating
Lattice-Boltzmann Equation
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A new and general technique for simulating solid-fluid suspensions, which combines molecular
dynamics for the solid particles with a lattice-Boltzmann model for the fluid, is described. The
many-body hydrodynamic interactions are fully accounted for, both for small particle velocities
and at higher Reynolds numbers. Brownian motion of the solid particles is included by adding a
fluctuating component to the fluid stress tensor. Simulations of the dynamics of colloidal particles
at short times compare favorably with recent diR'using-wave spectroscopy experiments.

PACS numbers: 82.70.Dd, 05.40.+j, 47.15,Pn, 82.70.Kj

In this paper a new simulation technique for partic-
ulate suspensions is described. It can efficiently track
the motion of large numbers of suspended solid parti-
cles over a wide range of flow conditions. In particular,
we can simulate colloidal suspensions of submicron sized
particles, suspensions of macroscopic particles, and flows
at small but nonzero Reynolds number. The technique
combines Newtonian dynamics of the solid particles with
a lattice-Boltzmann model [1,2] for the fluid. It is closely
related to earlier suspension modeling using lattice-gas
cellular automata [3,4], but has the advantage that un-
necessary statistical fluctuations are avoided, reducing
the need for computationally expensive ensemble averag-
ing. Instead, the fluctuations leading to Brownian motion
are incorporated through random stress fluctuations in
the fluid [5]. The simulations can easily track the motion
of solid particles at very short times, even prior to the
onset of Brownian motion. Until recently, there has been
little interest in this regime as it could not be probed ex-
perimentally; however, with the advent of diffusing-wave
spectroscopy [6] the short-time motion of colloidal parti-
cles can be measured accurately. Numerical simulations
can complement these experiments by providing detailed
information on the spatial and temporal development of
the hydrodynamic interactions. Our first investigation of
this kind of problem is reported in this paper; here we
have studied the short-time dynamics of spherical parti-
cles in dilute to dense suspensions. The experimentally
observed scaling of the mean-square displacement [7,8]
has been reproduced by the simulations, over the com-
bined time regime probed by both sets of experiments. A
possible explanation for the continuation of this scaling
to very short times is suggested.

The classical description of colloidal particle dynam-
ics is the Einstein-Smoluchowski equation, in which the
details of the short-time dynamics are ignored. The hy-
drodynamic interactions are assumed to be fully devel-
oped, so that there is a complete separation of time scales
between the dynamics of the fluid and the (diffusive) mo-
tion of the particles. However, because of the assumed
time-scale separation these interactions are global, that

is, every part of the system affects every other part; thus
large-scale matri~ inversion is required to determine the
6N x 6N diffusion tensor, which characterizes the hydro-
dynamic interactions in this approximation. Therefore,
early simulations of Brownian motion either ignored the
hydrodynamic interactions altogether or used oversimpli-
fied pairwise-additive approximations [9]; in either case
quantitative results could only be obtained at very low
volume fractions. More recently, improved methods of
computing these hydrodynamic interactions have been
developed [10,11], but their computational cost is high,
increasing as the cube of the number of particles. The
motivation underlying the lattice-gas/lattice-Boltzmann
approach is that, by allowing for the natural time evolu-
tion of the hydrodynamic forces and torques, the inter-
actions remain purely local; thus the computational cost
scales linearly with the system size.

The major drawback of the lattice-gas approach to
fluid dynamics has been that it requires extensive en-
semble averaging or time averaging to produce statisti-
cally significant results. However, by ensemble averaging
over the microstates of the lattice gas with the molecu-
lar chaos approximation, we can obtain a coarse-grained
description of the time evolution of the lattice gas, anal-
ogous to the Boltzmann equation for a dilute gas, but
discretized in velocity, space, and time [12]. Thus, in
the lattice-Boltzmann method, we simulate the macro-
scopic motion of a fluid by following the time evolution of
the one-particle velocity distribution function f;(r, t) [2],
which describes the number of particles at a particular
node of the lattice r, at a time t, with a velocity c,', r, t,
and c, are discrete, whereas f; is continuous. The hydro-
dynamic fields, mass density p, momentum density pu,
and stress o. are moments of this velocity distribution:
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In our implementation there are 18 possible velocities,
corresponding to the first and second neighbor directions
of a simple cubic lattice. At each time step, the velocity
distribution is advected from node to node of the lattice
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according to the evolution equation [2]

f, (r + c,tp, t + tp) = f, (r, t) + 4f '(r, t), (2)

~fcoll ) g (f f&q) (3)

The eigenvectors of the linearized collision operator, 2, ,
comprise the hydrodynamic modes of the fluid (mass,
momentum, and stress), together with short-lived non-
hydrodynamic modes of no physical significance. Thus
the eigenvalues of 2 are chosen to conserve mass and mo-
mentum, and to attenuate the shear stress by an amount
that depends on the assigned kinematic viscosity; higher
order moments of the distribution function, which are ir-
relevant to simulations of incompressible fluid dynamics,
are set to zero.

The collision operator given in Eq. (3) has the effect of
driving any velocity distribution towards the preset local
equilibrium. In colloidal suspensions the Reynolds num-
ber is very small; in this case the equilibrium distribution
is of the form

f = —I~+4-, ' I,,q p ( u c, 5

24 ( c~ j (4)

where the coefficient n, is equal to 2 for [100] velocity di-
rections and equal to 1 for [110]velocity directions. As in
the kinetic theory of gases, the mass density, momentum
density, and pressure (p = p/2) are moments of the equi-
librium distribution, whereas the deviatoric stress tensor
is derived from moments of the nonequilibrium distribu-
tion, f, —f,'~ Note tha.t at nonzero Reynolds numbers,
the equilibrium distribution must contain terms propor-
tional to (u c,) in order to generate the proper non-
linear terms in the Navier-Stokes equations [13].

The solid-fluid boundary conditions are modeled in
a similar way to the earlier lattice-gas based simula-
tions [14,15]. The solid surface, a sphere of radius a in
this case, is placed onto the lattice, thereby cutting some
of the links between lattice nodes. The fluid particles
moving along these links interact with the solid surface
at boundary nodes placed halfway along the links. Thus
we obtain a discrete representation of the solid surface,
which becomes more and more precise as the particle gets
larger. The lattice nodes inside and outside the particle
are treated in an identical fashion, so that the fluid fills
the whole volume of space, both inside and outside the
particles. However, because of the relatively small vol-
ume inside each particle, the interior fluid relaxes quite
quickly to rigid-body motion, characterized by the par-
ticle velocity and angular velocity. Thus, on physically
important time scales, the interior fluid only contributes
an additional inertia to the solid particle.

At each boundary node there are two incoming distri-

where tp is the time step. The collisional term, Af; ",
can be simplified by linearizing about the local equilib-
rium distribution f,'~(r, t) [2],

18

butions f, and f, , corresponding to velocities c, and c,
(c, = —c,) parallel to the link direction. By exchang-
ing population density between f, and f, we can modify
the local momentum density to match the velocity of the
solid particle surface, without affecting either the mass
density or the stress [see Eq. (1)]. Because the stress ten-
sor is not affected by the boundary-node collision rules
(by symmetry), the hydrodynamic stick boundary con-
dition applies right up to the solid surface, without any
intervening boundary layer. This point is discussed in
more detail in Ref. [4]. The change in fluid momentum at
each boundary node is transferred into forces and torques
acting on the solid particles, which in turn is converted
into changes in particle velocity and angular velocity, ac-
cording to the assigned mass and inertia.

In recent years, it has become increasingly obvious
that the the lattice-Boltzmann equation is a much bet-
ter simulation tool for hydrodynamics than lattice gases.
However, in its normal state the lattice-Boltzmann equa-
tion cannot model the molecular fluctuations in the sol-
vent that give rise to Brownian motion. The main con-
tribution of this paper is to show that this diKculty
can be overcome, within the framework of fluctuating
hydrodynamics [5], by adding a random component to
the fluid stress tensor. Thus, in the fluctuating lattice-
Boltzrnann equation, the updated velocity distribution
contains a stochastic term f,'(r, t), representing thermal
fluctuations,

f, (r + c,tp, t + tp) = f, (r, t) + 4f; "(r, t) + f,'(r, t), (5)

where f' is chosen so that only its stress moment o' =
& f,'c,c, is nonzero. These random stress fluctuations

are uncorrelated in space and time [5],

(cr' p(r, t)cr'~(r', t'))
2= Ab, „Hag (6o~6py + 6op6p~ ——6opb~p);3

the choice of the variance A serves to define the effective
temperature of the fluid, via the fluctuation-dissipation
theorem. The details of the calculation will be given
in future work; essentially one must solve a discrete
Langevin equation for the fluid stress tensor. In the
limit that the correlations in the total fluid stress (not
just the random part) decay instantaneously, we recover
the Landau-Lifshitz result A = 2gpk~T [5], where gp is
the viscosity of the pure fluid. This approach is quite
different from Brownian dynamics [9] or Stokesian dy-
namics [10], where random fluctuations are applied di-
rectly to the particles; these methods cannot account for
the short-time particle motion that is examined in this
paper.

As a preliminary test of the simulation method, a di-
rect comparison has been made between numerical and
theoretical results for the motion of an isolated sphere
in suspension. In Fig. 1, the decay of an initially im-
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FIG. 1. Translational velocity U(t) and rotational velocity
A(t) of an isolated sphere. The time-dependent velocities of
the sphere are shown as solid symbols; the relaxation of the
corresponding velocity autocorrelation functions are shown as
open symbols (with statistical error bars). A sufficiently large
fluid volume was used so that the periodic boundary condi-
tions had no effect on the numerical results for times up to
t = 1000. The solid lines are theoretical results, obtained by
an inverse Laplace transform of the frequency dependent fric-
tion coefficients [16] of a sphere of appropriate size (u = 2.6)
and mass (p, /p = 12); the kinematic viscosity of the pure
fluid v = 1/6.

posed translational velocity U(0) or rotational velocity
A(0) is compared with the velocity autocorrelation func-
tion of an identical particle, set in motion by stress fluc-
tuations in the fluid. Within the statistical error bars,
the normalized velocity correlation functions are iden-
tical to the steady decay of the translational and rota-
tional velocities of the sphere; thus our simulations sat-
isfy the fluctuation-dissipation theorem. Moreover, the
simulations agree almost perfectly with theoretical re-
sults derived from the frequency-dependent friction coef-
ficients [16],even though there are no adjustable parame-
ters in these comparisons; thus we see that the fluctuating
lattice-Boltzrnann equation can account for the hydrody-
namic memory effects that lead to long-time tails [17].

Next we consider the motion of colloidal particles at
very short times, prior to the onset of Brownian motion,
where diffusing-wave spectroscopy has recently shown an
unexpected scaling [7]. If the mean-square displacement,
normalized by the self-diffusion coeKcient times the time
(AR2(t))/6D, (g)t, is plotted versus a reduced time t/~,
then, for all solids volume fractions, there is a scaling
time w(P) which collapses the experimental data onto one
master curve, indistinguishable from the isolated-sphere
result. Moreover, 7 seems related to the time it takes
fluid vorticity to diffuse a particle radius; values of v.

determined from the scaled mean-square displacements
are in good agreement with independent estimates of the
vortex diffusion time ri(P)/pa2, based on the suspension
viscosity g. Simulation data for a number of Brownian

t/~
FIG. 2. Scaled mean-square displacement (AR (t))/6D, t

at short times, vs reduced time t/w Simula. tion results for
128 spheres (solid symbols) are shown at packing fractions
P of 5%%uo, 25%, and 45%; the solid line is the isolated-sphere
result. The simulation parameters were the same as in Fig.
1 except that a sphere of radius 4.5 was used at the highest
volume fraction.

particles (N = 128) under the same scaling is shown in
Fig. 2. Results with different size systems (N = 16 and
N = 1024) indicate that the periodic boundary condi-
tions have a negligible effect on the 128-sphere results
for times up to about 1007.. The scaled data at var-
ious volume fractions collapse onto the dilute (single-
particle) result, in excellent agreement with experiment.
Moreover, the self-difFusion coefficient and viscosity that
are required to scale the mean-square displacement are
in quantitative agreement with independent simulations
and experimental data (see Ref. [18]). A comparison in
shown in Fig. 3.

The simulation data plotted in Fig. 2 show that the
scaling extends to very short times (t/~ ( 1), beyond
the range of the experimental data from Ref. [7]; very re-
cent experiments [8] independently confirm that scaling
exists in this time regime as well. Although the exis-
tence of a diffusive time scale based on the suspension
viscosity seems reasonable for times t && 7, an explana-
tion for the short-time scaling (t ( ~) is still called for,
since the many-body hydrodynamic interactions which
contribute to the suspension viscosity cannot develop at
such short times. We have recently studied this prob-
lern through simulations of stress relaxation in colloidal
suspensions. Our results show that substantial contri-
butions to the suspension viscosity arise essentially in-
stantaneously, from the interactions of the fluctuating
fluid with the solid particles. The stress-stress correla-
tion function of the suspension decays very rapidly, just
like the force-force correlation function between the solid
particles, with only a weak tail correction arising from
the time-dependent hydrodynamic interactions. Changes
in suspension viscosity as a function of time are only of
the order of (10—30)%. Thus it is quite plausible that,
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simulations treat the fluxes of the hydrodynamic fields
as dependent variables, rather than as spatial deriva-
tives, solutions of fluctuating hydrodynamics problems
are straightforward.
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FIG. 3. Scaled relaxation time r/ro (rp = a /v) and
self-difFusion coefficient D, /Do vs packing fraction P. The
data points are determined from the scaling of the 128-sphere
simulation data for various particle sizes. The uncertainty
in fitting the data is about 5%. Independent results [18] for
rlo/rl (solid lines) and D, /Do (dashed lines) are shown for
comparison.

even at short times, the suspension behaves as an efFec-
tive medium, so that the particle motions are essentially
uncorrelated with one another. This is fruitful ground
for further simulations, since it will be possible to probe
the time and the space dependence of the hydrodynamic
interactions directly.

In summary, the combination of molecular dynamics
for the particulate phase and the lattice-Boltzmann equa-
tion for the fluid phase is a promising technique for quan-
titative simulations of hydrodynamically interacting par-
ticles. The method is also very flexible; the particle size
and shape, the electrostatic interactions, the flow geom-
etry, the Peclet number (i.e. , the ratio of viscous forces
to Brownian forces), and the Reynolds number can all
be varied independently. Moreover, applications of the
fluctuating lattice-Boltzmann equation are not limited to
particulate suspensions. For instance, the techniques de-
scribed here could be extended to study the dynamics of
emulsions of immiscible liquids, or light scattering from
thermally conducting liquids. Since lattice-Boltzmann
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