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Curvature-Induced Lateral Phase Segregation in Two-Component Vesicles
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Shape transformations of two-component vesicles in which the spontaneous curvature depends on the
local compositions in the two monolayers are investigated theoretically. Even if the two components do
not exhibit lateral phase separation in spherical vesicles, temperature-induced shape transformations
cause lateral phase segregation. Vesiculation of smaller buds is favored in the two-component system.
In two-component vesicles with intermonolayer phase separation, thermal budding is dominated by the
different thermal expansion coefficients of the two monolayers.
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Shape transformations of large single-component fluid

bilayer vesicles have been investigated experimentally and
theoretically (for reviews, see Refs. [1] and [2]). Even

though not all aspects are completely understood so far, a
comprehensive picture is emerging. The evolution of
shapes is determined by the interplay between the bend-

ing energy [3,4] of the bilayer membrane and the geome-
trical constraint of a controlled volume-to-area ratio of
the vesicle. Changes in the latter quantity with tempera-
ture lead to pronounced shape transformations such as
budding and vesiculation, depending on the area expan-
sivity coefficients of the two monolayers, and their equi-
librium area diA'erence [5-11].

The next step towards an understanding of the physics
of biological membranes, consisting of lipid mixtures, is
the controlled study of two-component systems [12-20].
Quite generally, two diA'erent possibilities for a two-

component membrane in the fluid state have to be dis-
tinguished: (i) The system can exhibit genuine phase
separation, i.e., there are 8-rich and B-rich domains
separated by phase boundaries. The competition between
the line tension of phase boundaries and the curvature en-

ergy can give rise to the formation of buds as recently
discussed by Lipowsky [14]. (ii) There is no lateral phase
separation. Even then, local deviations in the composition
of the two monolayers lead to a spontaneous curvature if
the two species have a diAerent molecular geometry
[12,13,15,16]. Suppose an initially spherical vesicle is

subject to an increase in temperature. This temperature
change necessarily leads to deviations from the spherical
shape and, thus, to an inhomogeneous curvature. Be-
cause of the coupling between the local curvature and the
local composition, the composition becomes inhomogene-
ous too. In this case, the shape change drives phase
segregation contrary to case (i) where the domains cause
the shape transformation. The purpose of this paper is to
investigate case (ii) within a simple model which has the
virtue of being exactly solvable since it can be mapped
onto the standard model for single-component vesicles.
So far, shape transformations of two-component vesicles
have been studied explicitly only for two-dimensional

with a coupling constant X with the dimensions of an in-

verse length. We also allow for a systematic spontaneous
curvature Co.

The bending energy F ~ of the two-component vesicle is
then chosen as a generalization of the bending energy of a
single-component vesicle as

F )
= (K/2) ' (~ [2H(s) Cp(P(s) )] dA

+[tz/4R D ](AA —AAp) (2)

where H(s) is the mean curvature and tc is the bending
rigidity which we assume for simplicity not to depend on
the composition. For lateral homogeneous Cp, (2) is the
area-dilference-elasticity (ADE) model, within which

budding and vesiculation have been investigated in detail
[7,11,21]. It contains two bending contributions. The
first term is the usual local bending energy [3]. The
second term is the nonlocal bending energy which arises
from the fact that while stresses in the monolayer can re-
lax locally by gliding the monolayers over each other, a
global term remains because of the closed topology [4].
It depends on the deviation of the area diAerence h, A of
the two monolayers from the equilibrium value hA 0.
While hA is a geometrical quantity depending only on
the shape, hAO is determined by the diAerence in the
number of molecules of the outer and the inner mono-

vesicles [15,17] and perturbatively in three dimensions
around the sphere [18].

We first motivate the energy functional for a two-
component vesicle. The composition (area fractions) of
lipid A in the individual monolayers x~ ( = 1

—xtt )
(i =in, out) can deviate locally from the mean value x~ as
Bx~ (s) —=x~ (s) —x~, where s parametrizes the two-
dimensional surface of the vesicle. If this local deviation
is diAerent in the two monolayers, a local spontaneous
curvature is induced according to [15,16]

Cp(s) =X(8x'"'(s) —Bx'"(s)) + Co=kg(s) + Co,
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layer. D is the distance of the two monolayers and the di-
mensionless constant a is of order unity.

Since the membrane does not show genuine phase sepa-
ration, there is a free energy associated with deviation of
the composition from its mean value. For small devia-
tions, the lowest-order terms are —[Bx~ +(P'6x~) ],
where g is the correlation length for composition Iluctua-
tions and V is the covariant gradient operator. Expressed
in the variable p, and ignoring the terms in (6x~"'
+8'xg), since they do not couple to the shape, the free
energy F2 associated with an inhomogeneous composition
can be written as [16]

in which the three essential parameters have been renor-
malized as follows: First, the eAective bending rigidity is
rc/6' where

6—:I+X /e& 1

measures the eA'ective strength of the curvature to com-
position coupling. Thus, the bending rigidity decreases
for a two-component system, as has been previously de-
rived [16]. Second, the nonlocal term becomes more
relevant for stronger couplings since a gets renormalized
according to

(3)

where e is some molecular energy divided by the bending
rigidity. The total (free) energy F is then F=F~+F2.
Since the p field enters the energy F quadratically, it can,
in principle, be integrated out exactly. However, this in-
volves an inversion of the V operator which is nontrivial
for any nonspherical shape.

Axisymmetric vesicle shapes could now be calculated
by first deriving the shape equations through variation of
F with respect to the shape and the p field and then solv-

ing these equations in analogy to the single-component
case [8,21]. Even though this approach does not pose any
fundamental problems, a complete phase diagram would
require extensive numerical work.

In this paper, we use another approach to determine
solutions which minimize F. Since we are dealing with
shape changes of large vesicles which have a linear size of
the order of pm while the typical correlation length g will
be of the order of nm, the gradient term in F2 will be, in
general, much smaller than the p term. Therefore, we
can set (=0. This allows us to map the energy F onto
the usual bending energy for single-component vesicles as
follows: We minimize with respect to the composition
profile p(s). Since we assume that there is no exchange
of molecules between the two monolayers, the constraint
f dA&=0 is added with a Lagrangian multiplier rcpt to
F Minimization the.n leads to P(s) = [—p+k(2H(s)
—Co)]/(X +e). Using the condition IIidA&=0, p is
found to be p =k(AA/(AD) —Co), where A=4rrR is the
total area. This leads to

Finally, the renormalized equilibrium area diAerence is

This mapping of the energy F of the two-component
system onto the energy of a single-component system in
the ADE model constitutes our main result. Since the
ADE model has been investigated in detail, further
analysis is relatively straightforward. As an illustrative
example, consider the evolution of an initially spherical
vesicle [with a homogeneous composition profile p(s) =0]
with increasing temperature, see Fig. 1. For simplicity,
we assume (i) that the thermal expansion coefiicients of
both monolayers are the same, (ii) that the membrane
thickness D decreases with temperature in such a way
that the bilayer volume remains constant, and (iii) that
the comparatively small thermal expansion of the en-
closed iluid can be neglected [8]. Then the equilibrium
area difference hAO is related to the reduced volume t. by

where AAo(1) is the equilibrium area difference of the
spherical vesicle (v =1), as determined presumably by
the (poorly understood) formation process of the vesicle.
With increasing temperature the reduced volume de-
creases and the shape becomes more prolate. The inho-
mogeneous curvature then induces a nontrivial composi-
tion profile tlat(s). In the outer monolayer, the A mole-
cules are enriched at the poles (if their enhancement in

y(s) = [2X/(X'+ ~)][H(s) —~W/2DW], (4)

F= ~ II~dA(2H)'+
d6 4R D

(d,A —BAo) +const I.

(s)
Expression (5) is the standard form of the bending en-

ergy of a single-component vesicle in the ADE model [11]

which shows that the local composition follows the devia-
tion of the mean curvature H(s) from its average value
hA/2DA. After inserting (4) into F, the total energy can
be written as FIG. l. Evolution of a spherical vesicle as the reduced

volume v changes due to an increase in temperature for CO=0,
a=1, a=2, and AAO(1)/8irDR =1.7. The thin curves show the
composition p. The dash-dotted lines correspond to p =0. The
reduced volumes are i =1.0, 0.89, 0.89, 0.86, and 0.82 from left
to right. At c =0.89, the symmetric and the asymmetric shapes
have the same energy, indicating a discontinuous budding tran-
sition. The vesiculation line is reached with the last shape.
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F'IG. 2. Contour plot of the size r] of the bud at vesiculation
as a function of the coupling 6 and the initial equilibrium area
dilference AA0(1). The contours correspond to r~ =0.1, 0.2,
0.3, 0.4, 0.5, 0.6, and J2/2 from top to bottom. Below the last
curve, vesiculation is no longer possible. The asterisk marks the
parameters chosen for the sequence shown in rig. l.

the outer layer leads to a positive spontaneous curvature,
i.e. , if X & 0) while the 8 lipids are enriched along the
rim. For smaller v, the up/down asymmetric shapes have
lower energy leading to a discontinuous budding transi-
tion. These shapes finally end up at the vesiculation point
where two spheres of diAerent radii are sitting on top of
each other connected by a microscopic neck. In the ve-
siculated state, the composition within each sphere be-
comes homogeneous again with all the variation occur-
ring in the neck [22]. Thus, the shape change, i.e., here
budding and vesiculation, leads to phase segregation.

The extent to which the vesiculation, as an example of
a shape transformation, is modified by the presence of
two components is displayed in Fig. 2. It demonstrates
that the formation of smaller buds is more favorable in

the two-component system than in a one-component sys-
tem under the same conditions. Specifically, we plot the
(dimensionless) radius r~ of the bud (where rq is the ra-
d f the mother vesicle and r~ +r2 =1) at the vesicu-ius o e

* ' dif-lation point as a function of the equilibrium area
ference and the coupling constant 6, where 6'=1 corre-
ponds to the single-component case, i.e., no coupling.

Analytically, the vesiculation point, DAO L &r i &, in t e
ADE model is given by [21]

AAo L (r ) ) =2DR [4x(r ) + r 2) +2(1/r ) + 1/r 2)/a] . (10)

Using Eqs. (7)-(10), it is easy to determine the relation-
ship between AAo(1), r~, and 8 shown in Fig. 2. Note
that vesiculation requires that the spherical vesicle has an
initial equilibrium area difference AAo(1) & 8+DR [1
+1/(za)]. For comparison, a sphere with no nonlocal
bending energy has AAo(1) =8+DR. Larger equilibrium
area diA'erences lead to smaller buds. For a given initial
area difterence, the radius ri of the bud decreases as the
coupling increases.

A crude estimate for the magnitude of the curvature-
induced phase segregation can be obtained as follows: If
the spontaneous curvature is caused by the diAerent
molecular geometry of the 2 and B molecules, a typical
value for the coupling X, might be X=0.1/nm. For the
free energy density coefficient e, one estimates a=r T/
K'a, where r =—(T —Tc)/Tc is the distance to the A-8
critical point which separates the two cases alluded to in

the introduction, and a is a molecular length a=1 nm.
With the typical value T/«. = 1/25, one obtains 6 —

1

=0.25/r. For r +O. l, this indicates an effect of O(1) in

6 which translates into an appreciable shift in ri, see Fig.
2. More interesting, however, is to estimate the amount
to which the phase segregation is eA'ective. Inserting the
values just given and z=0. 1 into Eq. (5), one obtains
= 14[5/ —AA/(2DA ) ] nm. With H —hA/(2DA )

=1/R, the typical variation in the composition becomes
of the order of 1% for vesicles with a radius R =1 pm but
10% for R =100 nm. The relatively small value for the
larger vesicle can be substantially enhanced by approach-
ing the critical point [23].

This model also covers the thermal evolution of an ini-
tially spherical vesicle formed spontaneously by inter-
monolayer phase separation in an 2-rich outer monolayer
and a 8-rich inner monolayer as studied recently in ex-
periment [19] and theory [20]. Again, for these vesicles,
the spherical state has a lateral homogeneous composition
in each monolayer. The diff'erent mean compositions
xg xg eau'"' cause a nonzero average spontaneous curvature
Co. As temperature increases, the area excess leads to
deviations from the spherical shape which induces again
lateral phase segregation in the individual monolayers.
Since for this case, the thermal expansion coeScients in

the two monolayers are different due to their diAerent
composition, assumption (i) used above to derive the re-
sults shown in Fig. 2 no longer applies. In fact, it has
been shown in Ref. [8] that any asymmetry y&D/R in

the thermal expansion coefticients of the two monolayers,
a'" and a'"'=(1+ y)a'", has a significant effect on the
shape evolution for single-component vesicles. An analo-
gous calculation for the case studied here shows that the
size of the bud at vesiculation scales as

i/3
D (11)

2S2 a~R/(2+ ~)

for D((R in units of R, if we start with an initially spher-
ical relaxed vesicle [AAo(l ) =8zcDR]. The temperature
increase, h, T, necessary to reach vesiculation is 4,T
= r

~
/0'"(1 + /2). For an estimate, consider a 10%

asymmetry in the expansion coe%cients, i.e., y
==0.1 and

choose a= 1, 6=2. For large vesicles with D/R =10
one obtains r~=0. 1, and, with a'"=5&&10 /K, AT=2',
i.e. , an initially relaxed sphere reaches the vesiculation
point after a 2 temperature increase and the size of the
bud is —' of the mother vesicle. The bud size and theis [0 o
temperature interval necessary to reach vesiculation are
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generically much smaller than for the case of symmetric
expansion. Moreover, the asymmetric expansion also al-
lows vesiculation even starting with a relaxed sphere
AAo(l) =8trDR in contrast to the symmetric case as
displayed in Fig. 2. However, the size of the vesicles ob-
tained by spontaneous vesicle formation in mixed sys-
tems, so far, is typically R ~ 100 nm. In this case,
D/R +10 and neither the bud radius rt nor the tem-
perature interval h.T will be substantially diferent from
the case of symmetric expansion discussed above.

In summary, a model for vesicles made of two mixed
components can be mapped onto the model for single-
component vesicles with renormalized coe%cients. The
formation of smaller buds is favored in the two-
component system. Curvature-induced phase segregation
should be a measurable eAect for R =100 nm vesicles or
for larger vesicles in the vicinity of a critical point for
demixing. For vesicles which show intermonolayer phase
separation the same formalism applies. Thermal bud-
ding, however, is then dominated by the presence of
difterent thermal expansion coe%cients which, for large
vesicles, typically lead to smaller buds and smaller tem-
perature changes required to induce vesiculation.

Stimulating discussions with H. -G. Dobereiner, L.
Miao, E. Sackmann, M. Mortis, and S. Langer who also
gave the manuscript a critical reading are gratefully ac-
knowledged. This work was funded by the National Sci-
ence and Engineering Research Council of Canada.

' Permanent address.
fl] R. Lipowsky, Nature (London) 349, 475 (1991).
[2] M. Wortis, U. Seifert, K. Berndl, B. Fourcade, L. Miao,

M. Rao, and R. K. P. Zia, in Proceedings of the
Workshop on Dynamical Phenomena at Interfaces, Sur

faces and Membranes, Les Houches, 1991, edited by D.
Beysens, N. Boccara, and G. Forgacs (Nova Science,
Commack, 1991).

[3] W. Helfrich, Z. Naturforsch. 28c, 693 (1973).
[4] E. Evans, Biophys. J. 14, 923 (1974).
[5] S. Svetina and B. Zeks, Eur. Biophys. J 17, 101 (1989).
[6] E. Evans and W. Rawicz, Phys. Rev. Lett. 64, 2094

(1990).
[7] W. Wiese and W. Helfrich, J. Phys. Condens. Matter 2,

SA329 (1990); W. Wiese, W. Harbich, and W. Helfrich,
J. Phys. Condens. Matter 4, 1647 (1992).

[8] K. Berndl, J. Kas, R. Lipowsky, E. Sackmann, and U.
Seifert, Europhys. Lett. 13, 659 (1990); U. Seifert, K.
Berndl, and R. Lipowsky, Phys. Rev. A 44, 1182 (1991).

[9] J. Kas and E. Sackmann, Biophys. J. 60, 825 (1991).
[10] L. Miao, B. Fourcade, M. Rao, M. Wortis, and R. K. P.

Zia, Phys. Rev. A 43, 6843 (1991).
[I I] U. Seifert, L. Miao, H. -G. Dobereiner, and M. Wortis, in

The Structure and Conformation of Amphiphilic Mem
branes, edited by R. Lipowsky, D. Richter, and K. Kre-
mer, Springer Proceedings in Physics Vol. 66 (Springer,
Berlin, 1992), p. 93.

[12] S. H. Wu and H. M. McConnell, Biochemistry 14, 847
(1975).

[13] C. Gebhardt, H. Gruler, and E. Sackmann, Z. Natur-
forsch. 32c, 581 (1977).

[14] R. Lipowsky, J. Phys. II (France) 2, 1825 (1992).
[15] V. S. Markin, Biophys. J. 36, I (1981).
[16] S. Leibler, J. Phys. (Paris) 47, 507 (1986); S. Leibler and

D. Andelman, J. Phys. (Paris) 48, 2013 (1987).
[17] D. Andelman, T. Kawakatsu, and K. Kawasaki, Euro-

phys. Lett. 19, 57 (1992).
[18] T. Taniguchi, K. Kawasaki, D. Andelman, and T.

Kawakatsu (to be published).
[19] E. W. Kaler, K. L. Herrington, A. K. Murthy, and J. A.

N. Zasadzinski, J. Phys. Chem. 96, 6698 (1992).
[20] S. A. Safran, P. A. Pincus, D. Andelman, and F. C.

MacKintosh, Phys. Rev. A 43, 1071 (1991);F. C. MacK-
intosh and S. A. Safran (to be published).

[21] L. Miao, U. Seifert, and M. Wortis (to be published).
[22] For the nearly vesiculated shape, where the composition

gradient becomes large in the neck region, neglecting the
((VIS) term in F2 requires an additional justification.
Indeed, even though Vp becomes large, the area element
where this variation happens becomes small. In fact, con-
necting two spheres with a neck in the shape of the
catenoid (H =0) and solving for the optimal P(s) on the
catenoid in order to minimize the gradient term leads to a
variational estimate for the energy stored in the neck.
One finds F~ —p and F2—I/~lnp~, where p is the diameter
of the neck. Thus, in the limit p 0 the total energy in

the neck region vanishes.
[23] Very close to the critical point, the argument given above

that the correlation length is small compared to the size
of the vesicle is no longer valid. In fact, using (=a/r",
where a=1 nm and v= 1 is the critical exponent of the
two-dimensional Ising model, one obtains r, =a/R as a
crossover temperature. For r ~ r„ the gradient term in

F2 can no longer be neglected.

1338


