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Superstrings have been postulated based on parafermionic partition functions which permit spacetime
supersymmetry by generalized Jacobi identities. A comprehensive search finds new such identities.
Quadrilateral anomaly cancellation gives constraints on allowed chiral fermions. Bosonic left movers
and Z4 parafermionic right movers combine in a new heterotic superstring, more constrained than the
old one, yet equally applicable to physics.

PACS numbers: 11.17.+y, 04.6S.+e, 12.10.6q

Progress in superstring theory has been slow during the
last few years compared to its great strides about eight
years ago. Part of the problem is that the most promising
string theory, the heterotic string, has too much
nonuniqueness in its low-energy predictions. This stems
from the lack of calculational methods for selecting the
correct ground state, for breaking supersymmetry, and
for explaining the vanishing cosmological constant. None
of these deep problems will be addressed here, but we
adopt the viewpoint that the heterotic string does have
too much freedom and that one should seek a more res-
trictive starting point.

Parafermionic strings have been considered for several
years [1] and have recently been intensively studied in an
important series of papers by the Cornell group [2-5].
The motivation is to reduce the critical spacetime dimen-
sion below d, =10 by increasing the symmetry of the
worldsheet. In the d, =10 superstring there is worldsheet
supersymmetry which pairs a boson with a fermion for
each dimension; in a parafermionic superstring each bo-
son is paired with a Z~ parafermion thus realizing a
worldsheet fractional supersymmetry [2].

In the general case, the left movers and right movers of
a parafermionic string are assumed to carry Zz parafer-
mionic fields of order KL and Ez, respectively, denoted
(KL,Ktt). The critical dimension for this theory is found
to be d, =2+16/max(ICt. , Ett) except for the special case
(1,1) which has d, =26 [1,2]. The (1,1) bosonic string
which is the simplest and oldest string theory has inade-
quacies such as a tachyon, no fermions, and no finiteness.
Extending this model to a (2,2) superstring solves all
these problems, but this type-II model has insufhcient
freedom to accommodate the low-energy physics of the
standard model [6]. The (1,2) heterotic superstring has,
on the other hand, perhaps too much freedom with
respect to low-energy predictions.

The hope of parafermionic strings is to provide a more
restrictive scenario for string model building. For d, ~ 4
there are seven new parafermionic models, three with
Ktt =4 (KL =1,2,4) and four with &tt =8 (KL =1,2,4, 8).
In this Letter we shall examine these new models from
the points of view of spacetime consistency (anomalies)

and of possible connections to physics. Without knowl-
edge of the fractional superconformal constraint algebra
[5], we work only at the partition function level.

Six-dimensional K =4 models. —Models with KL
~ Kg =4 have critical dimension d, =6. In analogy with

the type-II string, the (4,4) model is the most constrained
of these three. The partition function for the (4,4) string,
z~44~, is composed of z4 parafermionic string functions
and was first written down in Ref. [2]. It is unique under
the assumption that the individual components are tachy-
on-free (i.e., have a series expansion in non-negative
powers of q).

Modular invariance itself does not fix the normaliza-
tion of Z~4, 4~, denoted here by a, but a physical interpre-
tation of the partition function as counting states requires
integer multiplicities, i.e., 16o E Z. The leading expan-
sion of Z&44l gives Z«, 4&=a(4 —4) q + . which is
identified as four bosons and four fermions coming from
each side of the string with total multiplicity a. The stan-
dard interpretation of these st"'es being a vector and spi-
nor in the d, —2=4 dimensional transverse space (thus
forming a super-Maxwell multiplet) requires the stronger
condition a E Z.

Although the massless states can be identified as hav-
ing usual bosonic and fermionic nature, the full spectrum
contains states at mass level 0 and 2 (modl) of which
the latter have well-known [3] difficulties with spin and
statistics. Here we focus on the massless spectrum and
assume the low-energy analysis is unaffected by the reso-
lution of such difficulties encountered at the massive level.

With a = 1, the massless states are created by tensoring
d=6 super-Maxwell multiplets on the left and right giv-
ing 1V =4A or 48 six-dimensional supergravity (in terms
of d =6 symplectic Majorana-Weyl spinors). The N
=4A theory is nonchiral because the spinors on the left
and right have opposite chirality; %=48 is chiral and is
prone to spacetime anomalies [71.

The massless type 48 string states form a %=48 grav-
iton multiplet and tensor multiplet and the pure gravita-
tional anomaly arising from this combination is nonvan-
ishing [5,8]. In Ref. [5] it is proposed to cancel the
anomaly by the judicious addition of twenty extra tensor
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ls(R) = »'«(273n, —29nb+n, —nd) trR +

Is(F) = 2'4 [TrF (adj) —TrF (matter)],
(2)

where the adjoint comes from the gauginos (c) and the
matter comes from the gauge representations of (d).
Since there is only one graviton, n, =1. For the minimal
N=2 matter content of the (1,4) model, we find that

multiplets. At the partition function level, these addition-
al massless states can be accommodated by choosing the
normalization a=6. However, since it is not clear how
these new physical states arise, we are led to consider the
other possibility that they come from extra modular-
invariant terms in Zf44& beyond those found in [2]; we
shall examine this below.

Now consider the generalized heterotic (1,4) and (2,4)
models. Similarly to the (1,2) heterotic string, the (1,4)
model has a gauge group realized by a c =26 —d, =20
Kac-Moody algebra generated by the internal left-moving
bosons. Massless states in this model arise from tensoring
the left-moving spacetime vector and Kac-Moody cur-
rents with the super-Maxwell multiplet of right-movers to
give six-dimensional N=2 supergravity coupled to super
Yang-Mills theory.

In a general N=2 theory the possible multiplets are
[8,9]

(a) (e„,yL„,B„'„'), (b) (8„',+',&tt, y),

(c) (A„',gL"), (d) (xj,y'),

where i =1, . . . , 4nd, j =1, . . . , 2nd, p, a =1 2 3 4 are
transverse space indices, and A is in the 2 of Sp(2). The
leading gravitational and gauge anomalies have the forms

nb =1, n, =dimG, and nd =0, where G is the gauge
group. The gravitational anomaly is thus proportional to
(244+dimG) and is hence nonzero for any G of positive
dimension.

Examining (2), we see that leading gravitational anom-
aly cancellation requires the addition of either new tensor
matter (b) or hypermatter (d) multiplets. However, ten-
sor matter multiplets cannot be created by tensoring bo-
sonic left movers with any right-moving states. As a re-
sult, we must add nd hypermat ter multiplets with
nd=(244+dimG) and in representations of G such that
the leading gauge anomaly also vanishes.

Maximal gauge symmetry for the (1,4) model in d, =6
arises for G =SO(40) and requires nd =1024 =2' to
cancel the trR anomaly. These hypermatter states must
further be put into representations of SO(40) so as to
cancel the leading gauge anomaly. The smallest dimen-
sional irreducible representations (irreps) of SO(40) are
1,40, 780, 819, . . . with leading quadrilateral anomalies
0, 1,32,48, . . . , respectively [10]. We find that anomaly
cancellation requires n780 1, n ~

=244, n4o =n8~9 =0 but
this leads to a nonchiral model in d=6 since the hyper-
matter spinors can pair with the gauginos.

One can obtain chiral examples in 1=6 with other
choices of gauge group; as examples, we consider
SO(24) &&SO(16) and SO(24) XEs where the partition
functions have been written in Ref. [3]. For the
SO(24) && SO(16) model, SO(24) has irreps 1,24,
276, 299, . . . with quadrilateral anomalies respectively
0, 1, 16,32, . . . . SO(16) carries irreps 1, 16, 120, 135, . . .

with anomalies 0, 1,8,24, . . . . Leading gravitational and
gauge anomaly cancellation gives three conditions on the
additional hypermatter representations, and we find the
only possible irreps of the hypermatter that cancel the
leading anomalies are [under (SO(24),SO(16) )]

(276, 1)+ (1,120) + 244(1, 1) nonchiral,

(276, 1)+8(1,16)+236(1,1) chiral under SO(16),

(1,120)+16(24,1)+136(1,1) chiral under SO(24),

16(24, 1)+8(1,16)+128(1,1) chiral under both SO(16) and SO(24) .

(3)

Cancellation of the nonleading and mixed anomalies will require a Green-Schwarz mechanism [11].
For G =SO(24) xEs, a similar analysis shows that the irreps of the hypermatter which cancel leading anomalies are

[under (SO(24),Es)]

(276, 1)+(1,248)+244(1, 1) nonchiral,

16(24, 1)+(1,248)+136(1,1) chiral under SO(24),

(276, 1)+492(1, 1) chiral under Es,
16(24, 1)+384(1,1) chiral under both SO(24) and Es.

(4)

Since the SO(40), SO(24) X SO(16), and SO(24) XEs partition functions given in [3] do not contain additional hy-
permatter multiplets, the chiral representations of (3) and (4) must arise from nonadjoint G states coming in a novel
way from the left-moving bosonic string. How these states may arise needs to be addressed if we wish to more fully un-
derstand six-dimensional anomaly cancellation.
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The remaining six-dimensional parafermion model is
the (2,4) one where the left movers are those of a super-
string compactified from d=10 to d, =6 while the right
movers are the K =4 set already considered. The
compactification of the left movers may be toroidal or
more general. Compactification on a torus will give a
N =6 supergravity theory which is anomalous.

A more general compactification of the left movers us-
ing, e.g. , a free-fermion interpretation [12-14] can real-
ize a c =10—d, =4 super Kac-Moody symmetry with
gauge group G of dimension up to 12 (in d, =6). When
this non-Abelian symmetry is realized on the left movers,
no massless fermions arise from the left [6]. Thus the
massless states form an N=2 theory similar to that of
the (1,4) model. As before, the minimal partition func-

tion will have a leading gravitational anomaly which is

nonvanishing but can be canceled by the addition of fur-
ther massless states.

When considering the (4,4) model, we alluded to the
necessity for additional massless states beyond those ac-
commodated in the a=1 partition function of [2]. We
have therefore considered the use of Z4 parafermionic
string functions c„with odd n [the string functions are re-
lated to the parafermionic characters by g„'(q)
=rl(q)c„'(q); see, for example, [3,15,16]l. These odd
functions did not play a role in the analysis of Ref. [3].
An exhaustive search for all tachyon-free modular-
invariant (4,4) partition functions leads to fifteen in-

dependent choices of which four are vanishing and may
be spacetime supersymmetric. One of these four is just
Z~4 4~, and the other three can be written as

Z =(32lg41 + lD41 +32IE41 ) (32lg4"
I

+ lDirl +32IE"
I )

Z4"' =Z44' = (32gr pre+ D
i D4rr+ 32E4r E rr ) (321pre

I
+ ID"

I
+ 321E4"

I )
(5)

, D4, and E4 are combinations of the even stringwhere C4
functions

Q&l 2(c 2 ) 3c 4 + (d 0+ ) 3c 24 + 3d 0+ (c 2 ) 2c 2

D4 = (d0+ ) + 8d0+ (c02) —16(c2 ) —16C2 (c2 ), (6)

E' =4d0+(cq) +6c c2(c ) +d0+(c )

and C4', D4', and E4' are combinations of the odd ones

C4 =4(ci ) ci +4ci (ci )

D II (d0 —)4

E4t =(c~') +6(cj) (c~ ) +(c~ )4,
(7)

where do —=co ~ co.
Because these three new terms in (5) are modular in-

variant by themselves, they can be consistently added to
the original (4,4) partition function Zt443. However, by
examining the parafermionic string functions, we see that
C4, D4, and E4 only have states at mass level fp 3 and

(all mod 1 ), respectively. They hence contribute only
massive states to the spectrum and have no eAect on the
low-energy properties of the (4,4) string.

The vanishing of the modular invariants, (5), arises
from the new generalized Jacobi identities relating even
and odd string functions,

CI CII D I D II E I E II

which we have proven on the basis of modular invariant
function theory following the procedure given in [4].

We remark that the minus signs in (5) may be inter-
preted either as the statistics factor for fermions or as an
internal projection. Without proper identification of spin
and statistics, it is not possible to make this distinction.
However, this issue is important since a projection actual-
ly removes physical states from the spectrum whereas the
other case does not. Since the minus signs serve to pro-

ject out the tachyons (present in D4 and E4), a natural
interpretation is to view the signs as an internal projec-
tion. With this interpretation, there are no additional
physical states arising from (5).

Four-dimensional K =4 models. —In compactifying
the /=4 sector from d, =6 to the physical spacetime
d =4, since we have no complete understanding of the un-

derlying worldsheet conformal field theory, it is impossi-
ble to make categoric statements about compactifications
without any geometrical interpretation. This is a caveat
of our analysis, but we feel confident that the rank of
the d =4 gauge group cannot exceed that allowed
in geometric compactification, namely, r,„=(d,—4).
Thus (4,4) compactified to d=4 can have an internal
non-Abelian gauge group only with rank r ~ 2.

The (1,4) model in d, =6 can have chiral fermions
transforming under a rank r =20 gauge group [e.g. ,

SO(24) &&SO(16) or SO(24) XEs ut supra], and this will

lead to an internal group with r ~ 22 in d=4. For exam-
ple, the maximally symmetric case of (1,4) in d=4 is for
gauge group SO(44) and is a nonchiral 1V=2 model with
partition function easily constructed following the pro-
cedure given in [3]. In order to obtain a chiral model,
one needs to break at least one of these supersymmetries
to give N ~ 1 in d=4 dimensions.

For (2,4) models in d=4, because the left movers are
governed by a super conformal field theory (SCFT), we
can take the approach of Dixon, Kaplunovsky, and Vafa
[6]. Since there are only two internal dimensions for the
KR =4 right movers, at least some of the rank 4 standard
model gauge group would need to arise from the left
movers. As long as a non-Abelian symmetry is realized,
it then follows that no massless fermions can arise from
the left movers [6]. Thus all massless four-dimensional
states take the form of bosonic left-moving states ten-
sored with (spacetime) supersymmetric right movers. If
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we assume that right-moving fermions are uncharged un-
der right-moving symmetries, then any massless fermions
must be right movers which are either gauge singlets or
tensor producted with non-Abelian generators on the left.
As a result, we demand the entire gauge group to be real-
ized by a c =6 super Kac-Moody algebra on the left.

We can now apply the result of [6] that if we seek
SU(3) &&SU(2) XU(1) with a realistic fermion spectrum
then we need c ~ 4+ 3 +1 = '3 which is too large to be
accommodated by a c =6 SCFT of the left movers. This
argument is not as rigorous as the one used in [6] for the
(2,2) type-II superstring because we have assumed that
none of the gauge group arises from the KR =4 right
movers.

Four-dimensional K=8 models. —For K=8, the criti-
cal dimension is d, =4 so that no compactification is
necessary (or allowed). This is, however, a mixed bless-
ing because the right movers for all K~ =8 models are in
N=1 supermultiplets with fermion helicities ~ 2 so that
the tensor product with an independent KL =1, 2, 4, or 8
sector will give nonchiral fermions. To achieve chirality
would require a correlation between left and right movers
which appears difficult without compactification.

In Ref. [2], one example of a tachyon-free modular-
invariant spacetime supersymmetric (8,8) partition func-
tion is provided. We have confirmed that this partition
function is unique by an exhaustive search of modular in-
variant combinations of all K=8 parafermion characters.
Out of a total of twelve modular invariants, only two ap-
propriate linear combinations are tachyon-free. Howev-
er, the second tachyon-free combination is nonsupersym-
metric so in this sense the (8,8) partition function is

unique and, unlike the K=4 case above, we find no new
K=8 identities beyond those of [4].

Possible approaches to physics. —Given the discussions
of the present paper, it is clear that of all the new models
the heterotic (1,4) model is the most promising for ac-
commodating the low-energy physics of the standard
model. For geometrically interpretable compactification
on M &K, however, there is an insuperable hurdle for
four-dimensional chirality. Although for higher dimen-
sions there exist Ricci-flat manifolds which can preserve
spacetime supersymmetry, no such manifold exists for K
except a torus which leads to a nonchiral N=2 model.
Hence we require a nongeometric reduction to d=4 from
the (1,4) string in d, =6. This is precisely what has been
suggested based on the independent consideration of spin

and statistics by the Cornell group [3,5]. The (1,4)
parafermionic heterotic superstring, quite unlike the less
constrained and much more familiar (1,2) heterotic
superstring, may thus exist consistently in d =4 only, and
not in the critical dimension; chiral fermions must then
arise from N =1 right movers in a complex representation
of the gauge group generated by the left movers.

The status of the mathematical consistency of the (1,4)
parafermionic superstring is yet to be understood at the
level of the older (1,2) heterotic or (2,2) type-II super-
string. Construction of the worldsheet constraint algebra
for the K=4 parafermionic superstring is thus an in-
teresting issue and merits further study.
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