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Growth Instability in Helium Films
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We study the growth of liquid He films on weakly attractive substrates. Close to the substrate
the film grows by formation of well defined liquid layers. Above a minimum stable coverage, a
liquid monolayer uniformly covers the surface. Upon increasing the coverage a second liquid layer
begins to grow by the formation of two-dimensional liquid "clusters. " Above a certain coverage, the
second layer leaves vacuum-cluster coexistence, and the system regains the full planar symmetry.
The scenario is repeated for a third liquid layer. The results are interpreted in terms of recent
experiments of helium on graphite.

PACS numbers: 67.70.+n, 68.15.+e, 68.45.A~

In the low-temperature liquid phase, helium atoms ad-
sorbed to a substrate form a layerlike structure with lay-
ers parallel to the substrate surface. The cause of this
layering is the hard-core-like repulsion between the indi-
vidual atoms. The precise mechanism for the formation
of such a structure depends on the detailed geometry of
the substrate. If the substrate is smooth or, as in the
case to be studied below, consists of one or more layers
of solid helium, the growth scenario can be described on
the basis of relatively simple principles.

At very low densities, the first liquid layer (we will refer
to this layer as the "first" layer, independently of whether
the substrate itself consists of solid layers of 4He) will
form a low-density two-dimensional liquid. The satura-
tion density of this liquid pzD is known [I) to be approxi-
mately 0.042 A . Below a certain minimum density the
compressibility vanishes and the two-dimensional system
moves into a state of spinodal decomposition, i.e. , He
clusters coexisting with the vacuum. A good estimate
of pzD „ is 0.037 A. [2]. It is important to note that
p2D is considerably below the saturation density p3D of
three-dimensional He, which would translate into a sur-

face density of psD = 0.077 A z. Therefore, by adding
further atoms to the liquid, the two-dimensional system
must become highly compressed in order to approach
the bulk equilibrium density. While a weakly attractive
adsorbate-substrate interaction would naturally favor a
compressed layer, a density will inevitably be reached
at which point it becomes energetically favorable to ele-
vate particles to a second (or even a third) layer, before
the first layer can be further compressed. An important
point is that for a highly layered liquid there will once
again exist a minimum coverage below which the second
liquid layer is unstable to spinodal decomposition. In
this Letter we provide convincing evidence that a zero-
temperature liquid He film is a striking example of such
a highly layered liquid.

The present Letter is devoted to a microscopic de-
scription of film growth. Our theoretical tool is the
hypernetted-chain (HNC) theory for inhornogeneous sys-
tems [3], which we have recently generalized [4,5] to in-
clude triplet correlations and elementary diagrams. The
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Phenomenological input to the theory is the microscopic
Hamiltonian which we assume to be of the form

~ = ) — 7,'+ &-b(r') +).&(ir' —r~i) (2)
2 i&j

where V(ir, —r~ i) is the liquid 4He- He interaction, and
U,„b(r) is the substrate-adsorbate potential. Other "ad-
justable parameters" are in a sense only the restriction to
triplet correlations in the wave function (I) and the effort
one is willing to spend in the computation of the relevant
"elementary" diagrams. From the experience with bulk
quantum liquids and quantum liquid mixtures in two and
three dimensions, we expect that the uncertainty caused
by the phenomenological Hamiltonian (2) is larger than
the uncertainty caused by the approximations implicit to
the HNC theory.

An important part for the variational approach is the
optimization of the many-body correlations by solving
the Euler equations

6u„(rt, . . . , r„)
=0

where E is the energy expectation value of the Hamilto-

level of implementation of the theory used here is iden-
tical to our theory for the bulk liquid [6], which repro-
duces the equation of state over a wide density regime
within better than 0.02 K, and is, when compared with
the Monte Carlo calculations of Ref. [I], similarly suc-
cessful in two dimensions [7]. Calculations on similar
systems have also been carried out within a phenomeno-
logical density-functional approach [8]. The applicability
of that theory in the two-dimensional limit has not been
examined.

The HNC theory is based on a variational ansatz for
the ground-state wave function of the many-body system
of the form

P
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nian (2) with respect to the wave function (1).
Besides the practical advantage of providing the best

possible wave function in the given function space, one
can show generally that the Euler equations do not give
(unphysical) solutions if the assumed geometry of the sys-
tem under consideration is unstable against infinitesimal
density fluctuations. For example, Euler equations will
cease to have solutions if one makes the incorrect assump-
tion that the liquid will be in a uniform state, and then
attempts to lower the density below the thermodynamic
spinodal line where the compressibility becomes nega-
tive [9]. The Euler equations will have solutions only if
they are defined in a general enough space that includes
the broken-symmetry phase; in this example, the liquid-
droplet —gas coexistence. Consequently, one has confi-
dence that the theory is describing the correct physics, in
particular, in the vicinity of such structural phase tran-
sitions.

This feature of the Euler equations is particularly rel-
evant in the scenario we are describing here: the growth
of helium films on a substrate. As discussed above, it
may become energetically favorable for a second (third. . .)
layer to form on the substrate before the first (second. ..)
layer has been compressed to, or above, its bulk equi-
librium density. In this situation "patches" of He can
form on the second layer, and the translational symme-
try parallel to the helium surface is spontaneously bro-
ken. Formally, the effect is described by the fact that
the chemical potential is no longer a monotonic function
of the surface coverage, or, equivalently, that the third
sound velocity becomes imaginary.

In order to describe our procedure and our results, we
must briefly review the basic ingredients of the theory.
A complete description of the basic theory is found in
Ref. [3]; technical details on the three-body equations
are discussed in Refs. [4,5].

First, the energy expectation value is rewritten as a
functional of the physically observable one-body density
pi(r) and the pair distribution function g(r, r'). A natu-
ral representation is

with

~s(q~() = hcsq~( (9)

under consideration. Since we are interested here in long-

wavelength, low-lying excitations, a formulation that em-

phasizes these features is, of course, preferable. The ex-
cited states of the system in a generalized Feynman ap-
proximation are obtained from the eigenvalue equation

d r' b(r —r')Hi(r) + 2V~h(r, r') Hi(r')Q~(r')

= h'~ Q (r) (6)
where

h 1 j.
Hi (r)—:— &p, (r)2m pi(r) pi(r)

h2
+ U.„b(r) + V~(r) —p,2m

and V~h(r, r') is the so-called "particle-hole interac-
tion, " which is defined diagrammatically through the
HNC equations. In principle, V h(r, r') can also be de-

fined as the second variational derivative of the correla-
tion energy with respect to the one-body density,

Ec
Vp h(r r') = v'pi(r) ~, ~

'
~,.v'pi(r')

b pi(»pi(r')
In practice, the relationship (8) is true only in an ex-
act theory; the comparison between the diagrammatically
and variationally defined V h(r, r'), or derived quanti-

ties, provides in any approximate theory a useful consis-
tency check. The eigenfrequencies Ru are the frequencies
of the collective excitations in the system.

In the geometry to be considered here, we assume that
U,„b depends only on the distance z from the substrate,
and that the system is translationally invariant in the x-y
plane. In that geometry, the eigenvalue equation (6) can
be decoupled in momentum space as a function of the mo-
mentum

q~~ parallel to the surface. The long-wavelength
limit of the lowest-lying mode, which we identify with
the third sound, can be calculated and is found to be

2
E = d r V'/pi(r) + pi(r)U, „b(r)2m

+&. [g(r r') pi(r)] (4)
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] ~p Hi(0) + 2V~h(0)

where E, is the "correlation energy. " Its precise func-
tional form is irrelevant for the purpose of our present
discussion. The energy is then minimized with respect to
the one-body density, which gives a generalized Hartree
equation

h2
& + U-b(') + &~(r) V'pi(r) = PV'pi(r) (5)

where VH(r):—O'F,jap(r), and li is the 'chemical poten-
tial.

The Euler equation for the pair distribution function
can be formulated in various ways depending on whether
the short- or the long-range structure of the system is
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where n = jdz pi(z) is surface coverage, and Hi(0) and

V~h(0) are the long-wavelength limits of the correspond-

ing quantities defined above. The relationship (10) may
also be derived from Eq. (5); one finds the well-known
hydrodynamic relationship

mC3 = 7l
dp (11)dn'

The same precautions as mentioned above apply: The
velocity of third sound calculated by the hydrodynamic
derivative (ll) and the long-wavelength limit of the col-
lective excitations, Eq. (10), will normally agree only for
an exact theory. In general, one expects that the expres-
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FIG. 1. The coverage dependence of the chemical potential
of the He film. The coverage scale is adjusted to include the
liquid layers only. The full (dashed) line corresponds to S =1
(S = 1.1) in Eq. (14).

sion (10) is less accurate than the hydrodynamic deriva-
tive (11) since the diagrams included in Eq. (10) are a
proper subset of those included in Eq. (11). In particu-
lar for thick films, where the third-sound velocity goes to
zero, one must expect large-scale numerical cancellations
in the evaluation of expression (10).

In this investigation, we have studied the behavior of
liquid helium adsorbed to two layers of solid helium on
graphite. The substrate potential consists of three terms,

U b(z) = Up(z+zp)+) U(z+z) (12)

with

with e = 10.22 K and /T = 2.556 A. The surface densities
n, (i = 1, 2) were taken to be the experimental values [ll]
nq = 0.115 A s and n2 = 0.093 A 2. The offsets z, are
such that the distance between individual solid layers and
between the fi.rst solid layer and the substrate is about 3.3
A. . The adjustable parameter S, which has a direct effect
on the well depth, was initially set equal to 1. We have
chosen here the Lennard-Jones potential since its simple
form allows one to carry out the plane-averaging analyt-
ically. This choice is perhaps slightly inconsistent with
the choice of the Aziz potential [12] used for V(~r, —r~ ~),
but other uncertainties, arising from ignoring the corru-
gations in the underlying graphite substrate, and from
omitting zero-point motion caused by the assumption
that the solid helium layers are completely rigid, make
this inconsistency irrelevant.

We have calculated the ground-state structure of the

where the strength e has been chosen to match the
asymptotic strength of the graphite-helium interaction
[10], e/7 /2 = 186 meV. The two solid helium planes were
modeled by averaging Lennard-Jones potentials over a
plane,

(14)

liquid film for surface coverages between n = 0.035 A
and n = 0.20 A. . Plots of the chemical potentials and
mc3 are shown in Figs. 1 and 2. The most important
observation is that Euler equations do not have solutions
for all coverages. As was alluded to in the above dis-
cussion, this observation is consistent with the feature
of the HNC theory that the Euler equations have solu-
tions only if the geometry under consideration is stable
against infinitesimal perturbations, in other words, when
mcs2= ndp/dn ) 0.

The first instability is encountered for coverages be-
low n;„= 0.035 A . Below this value, which is in
close agreement with p2D,.„obtained from Green func-
tion Monte Carlo [2], the tu/o-dimensional liquid is un-
stable against density fluctuations —the liquid exits in
patches, above the solid layers, in coexistence with the
vacuum. As the coverage is increased above n~j„, the
film uniformly covers the surface; the He film has the
full planar symmetry forced on it by the substrate. Ini-
tially the film becomes more stable, but beyond a surface
coverage of 0.055 A. 2 the compressibility drops rapidly.
The cause of the rapid drop is a pronounced thickening of
the film (Fig. 3) which had been highly two dimensional
up to that point.

The quasi-two-dimensional phase becomes unstable
between surface coverages of 0.068 A and 0.069 A
The film consists of a cluster-vacuum coexistence above
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FIG. 3. The density profile for various values of coverage.
The profiles correspond to surface coverages of 0.035, 0.040,
. . . , 0.065, and 0.068 A for the monolayer, 0.10, 0.105, . . . ,

0.13 A for the double layer, and 0.165, 0.17, . . . , 0.195 A
for the triple layer.
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the first liquid layer. The feature that makes 4He films
highly layered emerges from the realization that the in-
stability region of the second layer once again has a width
in coverages of 0.035 A . Beyond a coverage of 0.1 A
the second layer uniformly covers the surface. The same
pattern is repeated for the third layer: An instability re-
gion of width 0.035 A. s exists between coverages of 0.13
A. 2 and 0.165 A. 2 [13].

If the conjecture that proposed growth scenario 4He
is correct, then the value of width of the instability re-
gion, An = 0.035 A 2, should be reflected mainly in the
adsorbate-adsorbate interaction and not the substrate-
adsorbate potential. Indeed when the well depth of the
latter was increased by 10'%%ue, by altering S in Eq. (14) (cf.
Figs. 1 and 2), we find (A) an expected overall increase
in the maximum of the compressibility, in the stable re-
gions, indicating an increased local density per layer, (B)
a slight uniform shift in the coverage, and (C) the value
An = 0.035 A persisted.

As mentioned above, our largest uncertainty comes
from choosing a substrate potential. Comparison of our
results with recent high-resolution adsorption isotherm
data [14] indicates that Eq. (14) is a realistic potential.
The coexistence regions will obviously be strongly influ-
enced by finite-temperature effects. Nevertheless, at 0.65
K, clearly distinguishable 4He layers are observed. Va-
por pressure measurements show regions of slowed rates
of adsorption for coverages in regions corresponding to
coexistence. The experiments also reveal well defined
oscillations in the c3, with periodicities coinciding with
the formation of layers. In our calculations, inner layers
continue to grow during the growth process of outer lay-
ers. Our first layer saturates at a density near 0.07 A.

by the time the third layer is a partial way through its
growth. This value is once again in good agreement with
the corresponding experimental value.

After this work was completed, we learned of recent
measurements of fourth-sound velocities of helium on
graphite [15]. While these measurements are carried out
under pressure and correspond to a liquid-solid transi-
tion, the reported growth scenario is completely analo-
gous to the one reported in this work: Depending on the
coverage, the solid layer either grows continuously or by
the growth of small clusters coexisting with the liquid.
This behavior persists through the growth of eight solid
layers.
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