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Measurement of the Wigner Distribution and the Density Matrix of a Light Mode Using
Optical Homodyne Tomography: Application to Squeezed States and the Vacuum
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We have measured probability distributions of quadrature-field amplitude for both vacuum and
quadrature-squeezed states of a mode of the electromagnetic field. From these measurements we
demonstrate the technique of optical homodyne tomography to determine the Wigner distribution and
the density matrix of the mode. This provides a complete quantum mechanical characterization of the
measured mode.

PACS numbers: 42.50.Dv, 42.65.Ky

According to the standard interpretation of quantum
mechanics the density matrix p contains all knowable in-
formation about a given quantum system and allows the
most precise statistical predictions possible. A measure-
ment of the density matrix would provide a complete
characterization of novel quantum states, including
squeezed states [1,2] and states yet to be produced such
as macroscopic superpositions (Schrodinger cat states).
In general, a set of probability distributions measured in
diAerent representations is sufticient to determine p
uniquely [3]. For a system with a single degree of free-
dom, described by an operator x, one can define quadra-
ture amplitudes x& which are related to x by Hilbert-
space rotations. Vogel and Risken [3] recently showed
that one can obtain the Wigner distribution by tomo-
graphic inversion of a set of measured probability distri-
butions, Pt, (xt,), of the quadrature amplitudes. Since
there is a one-to-one correspondence between the Wigner
function and the density matrix [4], their proposed
method accomplishes the measurement of p. Alternative
measurement methods for determining the state of a sys-
tem have been suggested by Royer [5] and by Band and
Park [6]. To date, no reports have been made of quan-
tum state measurements on systems with continuous vari-
ables.

In this paper we report the first measurements of
quadrature-amplitude distributions for a mode of the
electromagnetic field obtained using balanced homodyne
detection. From the measured distributions, we deter-
mine the Wigner distribution and density matrix in the
cases of vacuum and quadrature-squeezed states. Our
measurements are in contrast to previous experiments in-
volving homodyne detection, which measured the quadra-
ture variances. In general, measurements of variances
are not su%cient to fully characterize the quantum state.
It is essential to measure Pt, (xt,) if one wishes to extract
the density matrix for an arbitrary state. Once the distri-
butions Pt, (xt,) are obtained, we use the inverse Radon
transform familiar in tomographic imaging to obtain the

where p is the density operator and Ix) is an eigenstate of
the operator x, obeying [x,p] =i with its conjugate vari-
able p. In the case of a pure state there is a unique
correspondence between the wave function tlr(x) =(xltit)
and the density matrix through the relation (x lplx')
=y(x) tlt*(x'). For a light mode with annihilation
operator a, the operators x and p are x =(a+a )/2'I
and p = (a —a )/i 2'I . The Wigner distribution is a joint
quasiprobability distribution and is especially suited for
calculating statistical moments of the quadrature ampli-
tudes represented by the operators

x& =x cosp+ p sing, p&
= —x sing+ p cosp, (2)

defined with respect to a reference phase p. Any moment
involving x and p in Weyl order can be evaluated as a c-
number integral with W'(x, p) as a joint weighting func-
tion, even though for some states W(x,p) can be negative
over portions of its domain [4]. Furthermore, the proba-
bility distribution Pt,(xt,) for any quadrature amplitude x&
can be obtained by integrating the Wigner distribution
over the conjugate variable p& [3],

Pt (x&) =„W(xt costlt p& si ntit, x& sin tlt+
—p&costit) dpt, .

(3)
Given a set of distributions P&(x&) measured by homo-

dyne detection, for all values of p between 0 and tr, Eq.
(3) can be inverted to yield 8'(x,p) [3]. For a finite set

Wigner distribution and density matrix. We refer to this
new method as optical homodyne tomography (OHT).
The application of OHT to a squeezed state agrees well
with the theoretical predictions. We point out that the
method of OHT applies to any state without assuming a
particular form for Pt, (xt,).

The Wigner phase-space distribution for a single de-
gree of freedom is defined as [4]

p oo

W(x,p) =— (x+x'Iplx x')e "~ dx',—oo
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x& =A'&/(2nLQ) ' ', (4)

where nL~ is the mean photoelectron number produced
b the LO 1y pulse. For homodyne measurement using a
photodetector having quantum efficiency q and response
time longer than the LO pulse duration, the annihilation
operator a related to the quadrature amplitude x& is given

by a =Wqa, +Jl —r)a„„,where [12]

of p values, the inversion can be carried out using the in-

verse Radon transform familiar in tomographic ima in

T
is is the basis of optical homodyne tomograph .

he measured Wigner distributions for a quadrature-
grap y.

squeezed state and for the vacuum state of a field mode
are shown in Fig. 1. In our implementation of balanced
homodyne detection a pulsed signal field E~ is superposed
by a 50/50 beam splitter with a pulsed coherent-state
field ELo, called the local oscillator (LO), with phase
[8]. The resulting fields are detected with high-quan-
tum-efficiency photodiodes, and the resulting current
pulses are temporally integrated and subtracted. This
yields the photoelectron difference number N&. Recently
we showed that our apparatus allows the measurement of

istributions of photoelectron difference number in the
macroscopic domain [9]. The subtraction eliminates
classical-like fluctuations of the LO and signal fields, al-
lowing the quantum nature of the signal to be detected

g3 Assuming the LO to be much stronger than the sig-
nal, the operator N& for total photoelectron difference
number is proportional to the quadrature-amplitude
operator, defined with respect to the LO phase (|i by [10
11

a, = i —(c/2nhco) 't'„d's„dt uLo(s, t)Es+'(s, t),
(5)

and a„.„, is a vacuum operator coupled in by the loss
mechanism [10]. The interval [O, T] fully contains the
pulses and Eq+ (s, t) is the positive-frequency part of the
signal-field operator at the detectors' faces. The mode
function uLo(s, t) is related to the c-number LO field

ELo by uLQ(s, t) =e'~(c/2trhtonLo) ' ELo (s, t) where

th
co is the mean signal frequency, assumed much 1u arger
t an the signal-field bandwidth. The integral in (5), over
time and detector surface area 8, projects the signal field
onto the "spatial-temporal mode" of the local oscillator,
uLo(s, t), which is normalized over A and [O, T]. The
operator a defined in this way corresponds to the detected
mode. It satisfies the commutation relation for an annihi-
lation operator, [a,a ] = l.

We he have measured P&(x&) for a squeezed signal field
and for a vacuum signal field. The squeezed field is gen-
crated by using a walk-off compensated, traveling-wave
optical parametric amplifier (OPA) consisting of two
type-11 phase-matched KTiOPO4 (KTP) crystals [13].
The OPA is pumped by 300-ps, near-transform-limited
pulses at 532 nm from a frequency-doubled Nd-doped
yttrium-aluminum-garnet laser, operating at 420 pulses

down-conversion signal centered at 1064 nm consists of
two orthogonally polarized fields, the signal and idler, and
has a bandwidth estimated to be 10 times that of the
laser field. The pump polarization and the crystals are
oriented such that the produced signal and idler fields are
polarized 45' with respect to the polarizer axis (PBS 1).
The squeezed field is extracted from the down-conv
field b P

own-conversion
e y BS 1, which also serves to spatially overlap the

LO and squeezed field [14]. The LO field (1064 nm, 400
ps is obtained from the laser beam before frequency
doubling, and each LO pulse typically contains a mean
number of photons nL~ = 4 & 10 The coherent-state
shot-noise level (SNL) (variance of photoelectron counts)
in our detection scheme is equal to n

Fi
n LO.

igure 2 shows our setup for balanced homodyne
detection. Precise balancing of total photoelectron num-
bers from the two detectors (quantum efficiency rl —85%)
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FIG. 1. MMeasured Wigner distributions for (a), (b) a
squeezed state and (c),(d) a vacuum state, viewed in 3D and as
contour plots, with equal numbers of constant-height contours.
Squeezing of the noise distribution is clearly seen in (b)

LO

FIG. 2. A pparatus for balanced homodyne measurement of
quadrature amplitude. The crystals are oriented at 45' with

respect to the polarizer (PBS 1) axes in order to produce the
squeezed field. Prisms (not shown) in front of each detector re-
move the 532 nm pump beam from the 1064 nm signal beam.
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is achieved by combining the signal and LO fields with
perpendicular polarizations and using a A/2 wave plate to
rotate these polarizations by 45' [l4]. A polarizing beam
splitter (PBS 2) interferes the incident fields to produce
two fields that are detected by the photodiodes. The pho-
todiode outputs are electronically subtracted and in-
tegrated using a low-noise charge-sensitive preamplifier
[9], which yields the difference number of photoelectrons
on each pulse. Balancing removes most of the additive
noise associated with the LO energy fluctuations. Typi-
cally the electronic noise variance is 8 times lower than
the SNL. We make 4000 repeated measurements of the
photoelectron diAerence number N& at 27 values of rela-
tive phase p, adjusted by moving a mirror on a piezoelec-
tric translator. Using x&=1V&/(2nLo)' we thereby ob-
tain estimates of the probability distribution P (x ). The

]/2
&x&. e

scaling factor (nLo) can be measured in two ways: b
d'

ays: y
erect photodlode measurement of n Lg, and by measuring

the standard deviation of the photoelectron diff'erence
number resulting from the LO field. Our previous experi-
ment showed that these methods agree within 4%. Here
we have adopted the latter method, utilizing 160000
measurements of photoelectron diA'erence number.

Figure 3(a) shows a set of measured distributions of x&
for that mode of the detected squeezed field correspond-

ing to the LO spatial-temporal mode. The variances hx&
of each distribution are plotted in Fig. 3(b). We also
measured P&(x&) for the vacuum input field simpl b
blocking the down-conversion field and repeating the
above procedure. The variances of the vacuum distribu-
tions are within 5% of the theoretical value hx VBC 2

For a certain LO phase the variance for the squeezed
field is seen to fall 25% below Ax„„(the SNL). The un-
certainty product is Axohx F2=0.55, which is within 10%
of the value for a minimum-uncertainty state.

We obtained the Wigner distribution shown in Fig.
1(a) by performing the inverse Radon transform on the
measured distributions in Fig. 3(a). The numerical inver-
sion used the standard filtered back projection algorithm
for parallel-beam sampling geometry [7]. If W'(x, p) is
approximately Gaussian, as is expected from theory [15]
and verified by our experiment, the analysis in Ref. [16]
implies that the 27 values of p and the 64 bins for each
Pr, (xr,) are more than sufficient for an accurate recon-
struction of W(x,p). The contour plots of W'(x, p) clear-
ly show the circular symmetry of the vacuum distribution
(within experimental error) and the ellipticity of the
squeezed-field distribution. The Wigner distributions are
approximately Gaussian, as expected from Eq. (1) with a
Gaussian density matrix [15].

A one-dimensional Fourier transform can be performed
on W(x,p) to obtain the density matrix for the detected
mode,

&x+x'lplx —x') =„w(x,p)e")' dp. (6)

Figure 4 shows the magnitude of the resulting density
matrices for the vacuum and squeezed states in both x
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FIG. 3. & )&a) Measured quadrature-amplitude distributions at
various values of local oscillator phase. Note that since these
distributions are normalized, a decreasing width of a particular
distribution is accompanied by an increase in its peak height.
(b) Variances of quadrature amplitude vs LO phase: circles,
squeezed state; triangles, vacuum state.
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FIG. 4. Measured density matrix for (a), (b) the squeezed
state and &c& &~& the vacuum state in x or p representa-
ttcns: (a), (c) 1&p+p'Iplp —p'&I; (b), (d) 1&x+x'Iplx —x'&I.
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(i.e., xt, =o) and p (x&= lz) representations. They are
found to have near circular symmetry in x,x' (or p, p')
and to have complex phase angle of less than 0.15m. The
vacuum density matrix has the same width in both x and

p representations. In the p representation the width of
the squeezed-state density matrix is 12% narrower than
the width of the vacuum density matrix, while in the x
representation it is 18% broader.

Only in the case of a pure state is the density matrix
factorizable in the form (x~p~x') =tlt(x)y*(x'), where

y(x) is identified as the wave function. Our measured
density matrices for the squeezed state are found to be
nearly factorizable in this sense. It is not necessarily use-
ful to represent the data in this way since accuracy is lost
if this approximate "wave function" is used to make pre-
dictions about the field. For the vacuum, which is a pure
state, the density matrix is factorizable and we have con-
structed the wave function in this case. This shows that
the wave function for a pure state can in principle be
measured.

I n conclusion, we have demonstrated that optical
homodyne tomography can be used to measure the
Wigner distribution, and thereby the density matrix, of a
field mode that is selected by the spatial-temporal mode
of the local oscillator field. We used OHT to character-
ize quadrature-squeezed and vacuum states. Given the
measured density matrix, one could obtain experimentally
any of the various quantum distributions of optical phase
[11,17]. The method of OHT can also be used for
characterizing other quantum states of light such as
amplitude-squeezed states, phase-squeezed states, and
macroscopic superposition states. The method applies for
arbitrary states, including those which have Wigner dis-
tributions with negative values. We emphasize that it is

the ability to measure quadrature distributions in many
different representations which makes this method possi-
ble.
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