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The rate at which pure initial states deteriorate into mixtures is computed for a harmonic oscillator in-
teracting with an environment in thermal equilibrium. The decoherence process resulting from this in-
teraction selects a set of states characterized by maximal stability (or minimal loss of predictive power)
which can be quantified by the rate of increase in either linear or statistical entropy. In the weak cou-
pling limit, coherent states are shown to produce the least entropy, thus becoming the natural counter-
parts of classical points in phase space.
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Coherent states were introduced into physics primarily
because of mathematical convenience [1,2]. Later, it was
noticed that these states have several unusual properties
which allow them to play a special role whenever a har-
monic motion is a good approximation. For example, in

quantum optics their role is tied to mathematics, but also
to physics, as they are naturally generated by a laser and
prepared by a typical means of measurement (such as a
photomultiplier [3]). Here we shall show that coherent
states have one more remarkable property: When the
harmonic oscillator is weakly coupled to a canonical
(oscillator-heat bath) environment, coherent states are
least susceptible to the loss of quantum coherence.

Schrodinger [1] suggested very early on that coherent
states are the quantum counterparts of classical points in

phase space. His argument was based on the stability
and invariance of a Gaussian wave packet in an isolated
quantum harmonic oscillator. It preceded the realization
of many of the difficulties encountered in the interpreta-
tion of quantum mechanics. The hope that analogous
counterparts of classical trajectories could be found for a
general quantum system soon disappeared, in part as a
result of persistent questioning by Bohr [4]. When the
true nature of the difficulties posed by the conAict be-
tween the quantum superposition principle and its ap-
parent violations in the "real world" (in particular, in the
course of the quantum measurement process) became ap-
parent [5], this naive first attempt proved to be clearly
inadequate.

Recent discussions of the transition between the quan-

turn substrate and the familiar classical reality have fo-
cused on the "openness" of macroscopic quantum systems
[6], the stability of various quantum states in the pres-
ence of an environment [7-9], and the resulting process
of decoherence [9-13]. The question addressed by these
considerations goes back at least to Einstein, who (in a
letter to Born), inquired about the apparent absence of
the majority of quantum states admissible in the Hilbert
space from familiar, everyday experience [14].

The answer to such questions emerges naturally once
the role played by the environment in the transition from
quantum to classical is acknowledged: Macroscopic
quantum objects are nearly impossible to isolate from
their surroundings. It was shown for various idealized
models (invented primarily to study the "reduction of the
state vector" in the context of idealized measurements)
that, when the environment —that is, degrees of freedom
which interact with the record-keeping "pointer" of a
quantum apparatus —is taken into account, the vast ma-

jority of pure states become in effect inaccessible [7-9].
This is because a continuous interaction with the environ-
ment destroys, on a very short decoherence trme scale,
the purity of nearly all of the initial superpositions. Thus,
only the observations which refer to a preferred set of
stable states or the associated set of observables will ex-
hibit one of the key attributes of "classical reality, "—the
predictive power of the associated records.

Such an interaction can be thought of as a continuous
monitoring of the macroscopic quantum system by the
environment. Neglecting the self-Hamiltonian of the sys-
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tern, the eigenstates of the interaction Hamiltonian are
natural pointer states [7] of the quantum apparatus, as
they do not evolve at all. At the same time their superpo-
sitions can be shown to decay rapidly, regardless of the
initial state of the apparatus, into nearly exact mixtures
of pointer states. Thus, the dynamics of the complete sys-
tem prevents the stable existence of states corresponding
to superpositions of pointer positions and, therefore, re-
sults in an eAective environment-induced superselection
rule [7-9] which dynamically makes all such superposi-
tions inaccessible.

Special assumptions, such as the irrelevance of the
self-Hamiltonian, which are justifiable in idealized ap-
paratus models, do not apply to other macroscopic sys-
tems which are also expected to behave classically. But
the basic ideas regarding the openness of macroscopic
quantum systems and the function of the environment in

the apparent violation of the superposition principle on
the classical level can still be regarded as a guide in the
search for quantum causes of the emergent classicality
[7-10]. A natural generalization of the absolutely stable
pointer states of an apparatus in a situation where no

pure state is absolutely stable would be the set of states
which are least prone to deteriorate into a mixture. Since
entropy is a good measure of the loss of purity and, at the
same time, of the loss of predictability, a convenient cri-
terion for states of an evolving open system is based on
the increase of entropy of the density matrices resulting
from various initial states. The relatively least unstable
candidates for the set of preferred states are obviously
those which yield the least entropy increase. This pro-
cedure has been referred to as the predictability sieve
[10].

The search for quantum states which are closest to the
classical "points in phase space" provides an alternative
way of viewing the motivation for our study. Such states
should define the location in phase space with optimal ac-
curacy and evolve almost reversibly on a dynamical time
scale in spite of being coupled to an environment. By
looking at these states one is paying attention to a "high
resolution" regime (in contrast to the low resolution
Axhp» h which is sometimes associated with the classi-
cal limit). While complete reversibility cannot be at-
tained in an open system, it is still natural to ask what set
of states is closest to this Newtonian ideal especially in

the limit when the motion is nearly reversible. As the de-
gree of irreversibility is quantified by the increase of en-

tropy, we are again led to look for the states which result
in least entropy production.

We will apply the predictability sieve to a harmonic os-
cillator undergoing quantum Brownian motion [11]. To
estimate the entropy produced from some initial state we
will utilize the master equation for the reduced density
matrix. To simplify the analytic aspect of our presenta-
tion we will restrict ourselves to the case of weak coupling
and high temperature. However, as we will show later,
our results can be extended to the low-temperature re-
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gime. The high-temperature master equation is
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where [, ] and [,j are commutators and anticommuta-
tors, respectively, while HR is the renormalized self-
Hamiltonian of the system and y is the relaxation rate.
The above equation was derived for a system coupled
linearly through its coordinate x to a heat bath of har-
monic oscillators [11].

When Planck's constant is small relative to the actions
involved and when the object is massive —conditions ex-
pected in the classical limit —the third term of (1) is
dominant. It has been argued before by one of us that
this allows for a reversible classical limit in which the
nonlocal states are destroyed by the dissipative coupling
with the environment, and yet states which are localized
follow an approximately reversible equation of motion
[9].

A computationally convenient way to implement the
predictability sieve is to calculate the linear entropy pro-
duction. The linear entropy,

s (p) =Tr(p —p'), (2)
is a good measure of the purity of a quantum state.
When the interaction is weak (y-0) and the state
remains approximately pure we can use (1) to show that

s=4DTr(p x —pxpx) —2yTrp (3)

=4D(&x') —(x)') =4D~x',

where D =2ymkgT/6 . Thus the rate of linear entropy
increase is proportional to the dispersion in position. This
special role of position can be traced back to the form of
the interaction between the system and the environment,
which depends on and therefore commutes with x. In the
absence of the self-Hamiltonian, this would make position
eigenstates natural candidates for the pointer states.
However, we will show here that due to the presence of
the self-Hamiltonian, the pointer states turn out to be
coherent states which are as "close" to momentum as
they are to position eigenstates.

In the weak-coupling limit, we can integrate (4) re-
placing the free Heisenberg equations for the oscillator
operators in the right-hand side. In this way, since posi-
tion and momentum interchange their roles in the course
of every oscillator period r, we obtain
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10.0

, t=100

and greater, the least perturbed initial state will be a
coherent state (s;„=I;see Figs. I and 2). In the low-
temperature regime it is not possible to find simple ex-
pressions for f+but these. functions can be computed nu-
merically. The result, plotted in Fig. 3, confirms the
main result of our paper.

It is also of interest to extend this analysis by consider-
ing initial states that are not pure but mixed, exploring in
this way the imperfect resolution (i.e. , Axe�) It) re-
gime. Using Eqs. (10) and (12) we can show that, in the
high-temperature regime and for cot ~ I, the minimum
entropy-producing states are also such that sm;„= 1

(which implies that Ap =mrodx). Thus, the minimum
rate of increase of the area in phase space

+O(y')kgT
AM

(14)

is independent of the initial value of hxhp. However, the
rates of increase of both the linear and statistical entropy
(which can be used to quantify the rate of predictability
loss) decrease with the increase of Ao. This is in accord
with the expectation that stability and reversibility can be
enhanced by giving up resolution.

We conclude by reiterating the importance of the main
result for the understanding of the transition from quan-
tum to classical: The predictability sieve naturally selects
coherent states in the course of harmonic motion. These
states, being pure, allow for maximal resolution in phase
space. They can be regarded as the closest quantum
counterparts of classical points.
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