
VOLUME 70, NUMBER 8 PHYSICAL REVIEW LETTERS 22 FEBRUARY 1993

Critical Current of Josephson-Coupled Systems in Perpendicular Fields
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We calculate the magnetic field and temperature dependence of the critical current density j,
along the c axis in Josephson-coupled layered systems when the applied magnetic field is parallel to
the c axis. j, decreases with field and temperature because of the thermal fluctuations of the vortices
which induce a phase diiference across the junctions. The anisotropy ratio p oc 1/~j, acquires a field
and temperature dependence. The decoupling phase transition line above which the superconducting
current along the c axis vanishes is determined.

PACS numbers: 74.60.Ge

High-T, layered superconductors are well described by
the Lawrence-Doniach (LD) model, the essence of which
is the Josephson nature of the interlayer coupling. The
value of the interlayer critical current j, can be used as a
measure of the coupling strength and, as such, determines
the 3D electrodynamic and thermodynamic properties of
these compounds. Below we show that at high temper-
atures, when a magnetic Beld is applied perpendicular
to the layers, j, is strongly suppressed. Indeed, recent
measurements of the critical current of Bi- and Tl-based
tapes at high temperature have shown a rapid decrease
(approximately exponential) as a function of magnetic
field when the magnetic field is applied along the c axis
[1—3]. Although the nominal current direction in these
measurements is in the a-6 plane, the platelike morphol-
ogy and known Josephson-junction behavior of high angle
grain boundaries has suggested the "brick-wall" model in
which intergranular current transfer is across large area
c-axis Josephson junctions [4, 5]. This implies that rnea-
sured critical currents are determined by c-axis currents
flowing parallel to the applied Geld between the platelets.
In single crystals a suppression of the supercurrent along
the c axis when the magnetic field is parallel to the c
axis was seen in resistivity rneasurernents [6—8] and was
interpreted [7] as a decoupling of the layers due to the
application of a magnetic Beld.

These experimental facts can be accounted for if we
consider that the interlayer Josephson critical current
density j, in perpendicular fields has to be renormalized.
In other words, due to the nonlinear dependence of the
current on the gauge-invariant phase difference the in-
terlayer Josephson critical current j, becomes Beld and
temperature dependent.

We believe the physical mechanism responsible for the
renormalization of the critical current in the c direction
to be the following. A magnetic Beld applied parallel to
the c axis will create "pancake" vortices in the a-6 planes
[9]. If the pancake vortices are aligned from one layer to
the next and the vortices are straight, parallel stacks of
pancake vortices, they do not generate a difference in the
phase of the order parameter from one layer to the next
and do not suppress the critical current [10]. At large
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temperature, however, the pancake vortices are no longer
aligned from one layer to the next because of thermal dis-
order. The degree of misalignment depends on the elastic
properties of the flux lattice. The misalignment between
pancake vortices in adjacent layers generates a phase dif-
ference which depresses the critical current density lo-
cally [11]. As a result, the thermally averaged j, is de-
pressed (and consequently the penetration length for the

~ —1/2current along the c axis A oc j, and anisotropy ratio
p = A, /A b increase). This modifies the elastic constants
(which depend on j, via A, ) and therefore the ability of
the flux lattice to withstand thermal distortions. Thus,
j, must be calculated self-consistently. The reduction
in critical current caused by the thermal fluctuations in-
creases with magnetic field (i.e. , with vortex density) and
temperature. The corresponding self-consistency equa-
tion for the critical current shows that the supercurrent
along the c axis vanishes above some decoupling Beld,
B~(T) Recently. , Glazman and Koshelev [12] concluded
that the thermal fluctuations of the pancake vortices sup-
press the superconducting long-range order in the direc-
tion of the applied field causing the decoupling of the
layers, but they did not study the behavior of the critical
current or the anisotropy parameter.

In the following we consider a layered superconductor
in a magnetic field perpendicular to the layers. This ex-
ternal Beld is such that H, q (( H && H,2. Our analysis
is restricted to high temperatures, or, more precisely, to
the reversible region of the H-T plane so that pinning ef-
fects are unimportant. Within the framework of the LD
model, we evaluate the dependence of the critical current
density along the c axis on magnetic field and tempera-
ture. We then show how our results apply to supercon-
ducting tapes and how they complement the brick-wall
model [4] when the magnetic field is applied along the c
axis.

In the LD formalism, the interlayer Josephson current
density is given by
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~,' v~, ~+i(p) = o. (3)

The solution to Eq. (3) must obey the boundary condi-
tion that the line integral of V'zp „+r(p) along a closed
contour encircling the vortex be equal to 2~. This solu-
tion is

&p„„+g(p) = ) arctan
g gnm

where p „+q(p) is the gauge-invariant phase difFerence.

P„(p) is the phase of the order parameter in the nth
layer, s is the interlayer spacing, and A, (r) is the c-axis
component of the vector potential. p = (x, y) designates
coordinates in the a bp-lane and r = (p, z). In the pres-
ence of vortices, the gauge-invariant phase difference can
be obtained easily if we neglect the Josephson current
between the layers. (We will comment on this approxi-
mation later. ) The phase difference is then given by the
solution to the two-dimensional Laplace equation [13]:

In, +i= jp dp (exp [ip„„+q(p)]) (5)

Here ( ) denotes thermal averaging:

fVp„A(p„) exp( —PX(p„))
f &p exp( —&&(p ))

where Xfp„) is the free energy functional of the lattice
in terms of pancake coordinates. To carry out the inte-
gration in Eq. (5) explicitly we describe the flux lattice
distortions in the harmonic approximation, Let u„be
the displacement of a pancake vortex from its equilib-
riurn position p in the Abrikosov lattice. In terms of
the Fourier components u(q, k) of u„

S40
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the free energy functional is
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where p is the position of a pancake vortex in the nth
layer and rn is a set of two indices labeling the pancake
vortices in a given layer.

In order to determine the eff'ect of the thermal mo-
tion of the pancake vortices on the total critical current,
I„„+jbetween layers n and n+ 1, we evaluate the fol-
lowing statistical average:

+6',
~ c44Q )u, (q, k) u* (q, k),

(8)
where k = (k, k„), Q = 2(1 —cos q)/s, and i, j = z, y.
'Pl, ,~

= k, k~/k and 'P~, ,~
= 6,~

—'Pl. ,~ are longitudinal
and transverse projection operators. c66, cq q, and c44
are the Aux lattice shear, compression, and tilt moduli,
respectively. Ignoring the thermal distortions, i.e. , in the
standard mean-field approach, they are given by [12, 14]
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where A, = cCp/8vr sjp, and A~ = ps is the Joseph-
son length. For simplicity, the summation over k is per-
forrned over a circular Brillouin zone of radius Kp2

4~B/4 p. Beyond this approach the thermal fluctuations
of the vortices affect the moduli cq~ and c44 due to a
weakening of the Josephson coupling between the lay-
ers. Now the moduli should be calculated from the free
energy F(u, ) in the presence of an imposed vortex
distortion u, as the second derivatives of F with re-

spect to u, . In this case the terms in cq q and c44
which come from the Josephson part of the free energy
functional TJ are obtained by expanding TJ in terms of
ui)nm)

Fg(ug „+u, „j
Cpjp
27cc ) dp [1 —cos((p„„+(pug „+u, „))],

at given thermal distortions uq „p'g should be inte-
grated over uq to obtain the free energy F(u, „)].
In the expansion of ~p in u, „ the terms where jp
1168
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appears are of the form jpcos[y„„+q(uq„)]. Using
the self-consistent approach we replace this factor by
its thermal average (below we show that this aver-

age, jp(cos[p„„+q(uq „)])depends weakly on p). This
means that in Eqs. (9) we replace jp by the eff'ective crit-
ical current density j,(B) and A, by A, (B) given by

A, (B)—: . , j,(B) = "'" ', (ll)8~2sj, (B) ' ' f dp

where I„„+z(B)is given by Eq. (5). Equations (5)—(11)
allow one to obtain j, and the effective anisotropy pa-
rarneter p(B) = A, (B)/A g self-consistently.

We note that A, (B) defined by Eq. (11) indeed deter-
mines the penetration depth for the current along the c
axis for a weak component of the external field H, par-
allel to the layers in the presence of a large component
H, , perpendicular to the layers. To show this we use
Maxwell's equation for h:
Bh Bh& Bh,+
&y oy
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where h, = OA, ,/By is induced by the component of
the external field H, , and h&

——V x At,-is caused by
the distortions of the vortices; the gauge V A = 0 is
chosen. Expanding in A, , and averaging over thermal
distortions we obtain the usual London equation for h,,

8' s.
p(cos[&„„+r(u, „)])h, ,

c@p
= A, (h, ,)h,

Here we used the same self-consistent approach ns
mentioned above for the rnoduli, namely, we replaced
cos[p„„+r(u& „)]by its average value.

We simplify further the evaluation of I~ ~+i by lin-
earizing the gauge-invariant phase difference p„„+i in
the displacements u

i X Xm
pn, n+1(p) = ) (unm un+1;m)+p tan

g grn

(14)
This expression is valid under the condition ~p„+r
pn, m~ && ~p

—pn, m~ && AJ. For distances [p —pm~ larger
than Ag, the Josephson current provides 3D screening
and makes the phase difference smaller. In terms of
u(k, q), the phase diiference can be expressed as

pn, n+r(p) = ) e '~"(1 —e'~)27(p, k)u(q, k), (15)Scp
k, q

where, for a square Bux lattice,
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G are the reciprocal lattice vectors. After integration
over u(q, k) in Eq. (5) the final result is
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We consider in the following the coordinate-independent
term So which is the contribution in Eq. (18) diagonal in
reciprocal lattice vectors. The nondiagonal terms which
determine the coordinate dependent part of S(p) are
much smaller than Sc. The sums over k and G in Eq. (18)
diverge logarithmically because of the approximations
used to obtain Eq. (14). Taking into account the con-
dition ~pn+r m —pn m~ && ~p

—pn m~ && A~ under which
Eq. (14) is valid, we see that the upper limit for the sum-
rnation over G is 1/uT, where u& ——((u„+r m —u„) ).
Notice that the condition uT (( A~ is fulfilled because

uT~ & s(47rA, ) T/40 T. he lower limit for the summation
over k is 1/A~(B) = A b/sA, (B). The dependence of
A~ on j, is another reason that j, should be calculated
self-consistently.

The self-consistency equation for the effective
anisotropy parameter p(B) is

As B increases from zero to B~(T), the critical current
decreases from jo to jo/e and then drops suddenly to
zero. The phase transition is first order with a latent heat
(per unit volume) given by AQ = 40/32evr A bs2p02.

For large anisotropy, po » A b/s, only the third term
in c44 is important (it describes the electromagnetic in-
teraction of pancake vortices in diiferent layers). The
renormalization of AJ drives the transition, and the de-
coupling field is

C p3s 8~'TA'
( ) = 32. T'A. ,(r)

'" C„" (21)

As B increases from zero to B~(T), the critical cur-
rent density decreases almost exponentially from jp to
zero. All the thermodynarnical quantities are continuous
at the phase transition. The crossover from the moder-
ate anisotropy behavior to the high anisotropy behavior
occurs for a value of po equal to p„of the order A b/s.
For the parameters used in Fig. 1, we estimated p„= 60.

The magnetic field dependence of the critical current
and the temperature dependence of BD are shown in
Fig. j. for pp = 30 and 55. The decoupling field of ap-
proximately 2 T at T = 30 K obtained by Latyshev and
Volkov [8] via critical current measurements is in rea-
sonable agreement with our estimates. Notice that the
decoupling line lies above the irreversibility line. This
is consistent with our assumption that pinning is unim-
portant. Finally, although we have assumed an ordered
vortex lattice for our calculations, the results obtained
above can also be applied to the case of a fiux liquid (if
such a state exists) because j, depends on c44 mainly

exp[S (p)],

where pp is the anisotropy ratio at B = 0. The solution
to this equation shows that the c-axis critical current
j, decreases approximately exponentially with B up to
some decoupling field Bz&(T) above which j, = 0. When
B » C 0/A J, C 0/A b, the decoupling field coincides with
the field at which the vortex lines dissociate into a gas
of pancake vortices. This field is given by the condition
KouT = 1 [7, 12, 15]. For B & B~ the pancake vortices in
neighboring layers become almost uncorrelated and the
c-axis critical current vanishes.

If (nb(0)/s « fp « A b/s moderate anisotropy, ( b(T)
is the correlation length [16], the renormalization of the
elastic moduli drives the decoupling phase transition.
The decoupling field is given by

@3
B~(T) = 2 2 (e = 2.718...) . (20)
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exponentially on B and there is no decoupling transi-
tion because of the finite size of the system [17]. The
magnetic field dependence of j,/jo in the limit consid-
ered here (electromagnetic coupling) is shown in Fig. 2
for various temperatures.

In conclusion, we have obtained the temperature de-
pendence of the decoupling field when the applied field is
along the c axis in Josephson-coupled layered supercon-
ductors. In perpendicular fields, the anisotropy parame-
ter is now field and texnperature dependent because of the
vortex fiuctuations (contrary to the Ginzburg-Landau
model for which p is a constant).

This work was supported by the U.S. Department of
Energy. We thank L.I. Glazman, M. Ledvij, and V.G.
Kogan for useful discussions.

FIG. 1. Magnetic field dependence of the critical current
along the c axis in a single crystal. The solid lines are for
po

——55; the dashed lines are for po ——200. The inset shows
the temperature dependence of the decoupling field for two
values of po and s = 15 A, A~b(0) = 1500 A, and ( b(0) = 25

while its dependence on c66 is very weak.
The same mechanism for the reduction of j, applies

to tapes. In superconducting tapes, the brick-wall model
assumes that a transport current Bowing along the tape
is transferred from one brick to another along the c axis
of the crystallites ("bricks") making up the tape. The
difference between a single crystal and a tape is that the
bricks have a finite length I along the a bplan-es. Also, jo
now has a value appropriate for the weak links between
the bricks and is much smaller than the interlayer crit-
ical current density. Hence, as a rough approximation,
we can use the results obtained for a single crystal in the
limit po )) A b/s replacing Ag by L in the lower limit
for the summation over k in Eq. (18) (we assume that
L' ( A j) . The critical current depends approximately

1.UO

4.Q

FIG. 2. Magnetic field dependence of the critical current
of a superconducting tape Bi 2:2:2:3for different temperatures
and A, ( b) 0= 1200 A, s = 18 A, L = 1.0 pm, and T, = 110
K. The experimental data were taken from Ref. [2].
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