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Quantum Railroads: Introducing Directionality to Anderson Localization
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We present a theory of electron transport in novel disordered waveguides that support different num-
bers N and M of modes propagating in opposite directions, i.e., “quantum railroads” (QRR). Anderson
localization and the integer quantum Hall effect are special cases of our theory. More generally, our an-
alytic results based on scattering matrix theory and our numerical simulations show that disorder results
in directed localization in QRR’s: The limiting transmittance of a macroscopic QRR is T=|N—M] in
the majority direction but 7'=0 in the minority direction.

PACS numbers: 72.10.Bg, 72.15.Rn, 72.20.Dp

It was first proposed by Anderson [1] that under suit-
able conditions waves may become spatially localized in
the presence of disorder. This remarkable insight has
stimulated a great deal of theoretical and experimental
interest in a broad class of problems [2] referred to col-
lectively as “Anderson localization.” As was pointed out
by Mott and Twose [3], in disordered one-dimensional
systems every eigenstate is localized to some region of
space. As a consequence, at zero temperature, the con-
ductance of a quasi-one-dimensional waveguide with ran-
dom elastic scatterers decreases on the average to zero as
the length of the waveguide increases. This is despite the
strong fluctuations which occur. For weakly disordered
systems these fluctuations have the universal feature that
the variance of the conductance is a constant oz =(e?/
h)2. This has been demonstrated theoretically by
ATl'tshuler [4] and Lee, Stone, and Fukuyama [5] and ex-
perimentally by Blonder, Dynes, and White [6] and Um-
bach et al. [7] and Webb er al. [8]. More recently Pen-
dry, MacKinnon, and Pretre [9], and MacKinnon [10]
have discussed conductance fluctuations for more general
circumstances and their findings suggest that for long
strongly localized systems they occur rarely but with
maximal strength.

An essential, and at first sight quite general, assump-
tion that is implicit in all of the theoretical work on one-
dimensional Anderson localization is that the waveguide
under consideration supports equal numbers of modes
propagating in opposite directions. However, not all
quasi-one-dimensional systems have this property, as has
become increasingly apparent following the discovery of
the quantum Hall effect by von Klitzing, Dorda, and
Pepper [11]. Laughlin [12] explained the observed quan-
tization of the Hall conductance of the 2D electron gas in
semiconductor heterostructures in integer multiples of
e?/h [11], using a gauge invariance argument. Subse-
quently, however, Streda, Kucera, and MacDonald [13],
Jain and Kivelson [14], and Biittiker [15] proposed an al-
ternate point of view, in which the quantum Hall effect is
explained on the basis of the Landauer [16] theory of
one-dimensional transport, within the framework of mag-
netic edge states introduced by Halperin [17]. These
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edge states, which derive from the quantized Landau lev-
els of the 2D electron gas (2DEG) in strong magnetic
fields, follow the edges of the sample, and are the one-
dimensional transport channels (or modes) of these
theories. This edge-state picture of the integer quantum
Hall effect has gained wide acceptance.

Although in the quantum Hall effect transport is
effectively one dimensional, the considerations leading to
1D Anderson localization [1-7,9,10] do not apply to it
because all of the channels at a given edge of the sample
propagate in the same direction, which, in macroscopic
systems, makes backscattering of electrons impossible in
the quantum Hall regime. This important point was elu-
cidated by Biittiker [15]. Thus there can be perfect
transmission of electrons through a disordered macro-
scopic sample in the quantum Hall regime, in stark con-
trast to the zero average transmission found in more con-
ventional 1D systems.

The purpose of this Letter is to introduce a new physi-
cal phenomenon—directed localization. We report on a
theoretical study of the general problem of quasi-one-
dimensional transport in a disordered waveguide which
can support arbitrary numbers N and M of modes propa-
gating in the two opposite directions. Our waveguide
may be visualized as a railroad connecting Los Angeles
and New York with trains running in the direction from
LA to NY on N sets of tracks, and from NY to LA on
another M sets. At any time, a train may switch from
one track to another, changing its direction of travel or
not, depending on the tracks between which it switches.
Since the “trains’ represent propagating waves (or quan-
tum particles such as electrons), and “‘switching tracks”
is a quantum scattering process, we will speak of a
“quantum railroad” (QRR). One can then ask, if a train
sets out from LA, what is the probability of it eventually
arriving in New York? The two cases N=M and M =0
(V=0) correspond, respectively, to the case of 1D Ander-
son localization and to the case of perfect transmission of
edge channels in the quantum Hall effect discussed
above. We wish to investigate the general case, which
has not been explicitly studied in the context of localiza-
tion, i.e., we find that if N=M, the QRR exhibits a novel
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behavior that we will refer to as “directed localization.”
For example if N > M then a train that leaves NY never
arrives in LA—it always returns to NY; whereas a train
leaving LA has a finite probability of arriving in NY.
This probability approaches a nonzero limiting value as
the number of scattering events between LA and NY in-
creases, i.e., the QRR eigenstates are asymmetric. They
behave as if they were localized in so far as transmission
from NY to LA is concerned, but a significant fraction of
them are extended in the opposite direction, from LA to
NY. We will refer to this phenomenon as directed locali-
zation.

At present, to our knowledge, no example of the gen-
eral QRR that we consider here has been realized experi-
mentally. However, in the presence of magnetic fields,
periodic 2DEG structures such as the Azbel-Wannier-
Hofstadter (AWH) system [18-20], which have been in-
vestigated experimentally by Gerhardts, Weiss, and Wulf
[21], and 2D arrays of coupled quantum dots [22-26],
have all been predicted theoretically [23,24,27,28] to ex-
hibit multiple edge channels with different numbers of
modes propagating in opposite directions when the system
has a finite width. They are thus potential experimental
realizations of the general QRR. The Hall conductance
of the AWH system with no edges is predicted by con-
sideration of the Kubo formula and the topology of the
state structure [29] (see Aoki [30]) and is in agreement
with the edge-state picture of Ramal et al. [27] and Mac-
Donald [28] in which the conductance is the algebraic
sum of edge states in an AWH system of finite width.

The transport properties of a QRR are defined by a
scattering matrix of the form

T R
R' T

9 (1)

where T is an VX /N transmission matrix containing the
complex amplitudes for scattering between the /N forward
modes, T' is the M X M transmission matrix for the M re-
verse modes, and R and R' are the corresponding
reflection matrices. The two-terminal transmittances T,
T' and reflectances R,R' of the system, when connected
at either end to perfectly emitting and absorbing reser-
voirs, are simply related to the elements of this S matrix
through the norms of the transmission and reflection ma-
trices [31-33]

T=|T|]%, T'=|IT|% R=[R[?% R'=[R|>. (@

In this case the norm is defined by the inner product
(a,b) =trace(ab'), where a and b are matrices with suit-
able dimensions.

From these definitions it is easy to see that in a
waveguide containing no scattering the transmittances
will have the form 7=N in the forward direction and
T'=M in the reverse direction.

If we now introduce a series of unitary scatterers into
the QRR then the scattering matrix of the whole system
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must also be unitary. This condition, given by SS*
=S'S=I, where I is the identity matrix, implies severe
constraints on the quantities given in (2) above. For in-
stance, for the diagonal blocks we find, TT'+RR'=1
and T'T+R'TR'=I. Taking traces gives T+ R=N and
T+ R'=N. These results, together with those obtained
from the off-diagonal blocks, give the relations

T+R=N, R=R', T'=T—(N—M). (3)

These three relations together with the fact that 7,7,
R,R' are real and positive imply that any such system
will have transmittances in the ranges

0<=T'=M, (4)
N—-M=<T=<N. (5)

Hence, we see that the transmittance in the majority
channel direction has a lower limit of T=/N — M and in
the minority direction of 7' =0.

The second part of our proof is to make a justification
for asserting that as we make our QRR longer both T
and T will tend to decrease and therefore that for a typi-
cal system they will eventually reach their minimum
values. Adding a strip of material containing scatterers
to a QRR will cause a change in its reflection matrix
given by

Ry =R+B, (6)
where
B=Tr(1—R'r) ~!'T". (7

Capitals represent the transmission and reflection ma-
trices of the initial QRR and lower case those of the add-
ed slice. Taking the norm of Eq. (6) and using Egs. (3)
we find

T+ =T—||B||>~ (B,R) — (R,B) . ®)

Note that the same relation holds for 7’. Since the last
two terms in Eq. (8) may be positive or negative it is
clear that adding an extra slice of disordered material can
cause the transmittance to increase or decrease. Howev-
er, the possible choices for making 7 4+ larger are limited
in comparison to those which make it smaller and also the
range of those choices is highly dependent on the details
of the S matrix of the initial QRR. Thus unless the QRR
is made longer by adding material with scattering proper-
ties highly correlated to what has come before, the
transmittance will tend to decrease. For example, if we
construct a QRR from a stack of uncorrelated random
unitary scatterers, because there are no correlations be-
tween the reflection phases of the added slice it is easy to
show that (R,B) =0 and (B,R) =0 for each added slice.
The bar indicates an average over all possible slices which
may be added. Both inner products may be expanded as
multinomial series in the reflection amplitudes contained
in r. After averaging, these series become expansions in
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the multivariate moments of the elements of r. Each of
these moments is zero if there are no correlations between
the reflection phases and therefore on average the inner
products are zero. This fact indicates that on average
making the QRR longer will reduce its transmittance in
either direction. In order to investigate this point and
make it clearer for ourselves we carried out a number of
numerical simulations for different values of N and M.
The basis of our numerical method was to generate ran-
dom unitary scattering matrices using Gram-Schmidt or-
thogonalization on a set of N+ M random vectors. We
then convert these into transfer matrices with the correct
symmetries and take products to find the transfer matrix
for the whole system. This matrix may then be solved for
the transmission matrices and the reflection matrices and
the transmittances and reflectances found from their
norms. Figure 1 shows two simple cases for comparison.
N=M =2, the case where Anderson localization sets in,
and N=2,M =1 a QRR case. Both plots show that both
transmitivities reduce to their minimum values with in-
creasing length despite quantum L fluctuations. Note
that the transmission falls exponentially to its minimum
value in both cases—the general result for quantum
transport in 1D.

If adding an extra slice of disordered material to a
QRR typically reduces its transmittance in both direc-
tions, then for long systems experiments will measure the
values

T'=0, ©9)

T=N—M. (10)

1.0

] -0.8

107 0.6
H r0.4

-20-

H0.2

0.0

1.20
r1.15
r1.10

T
r1.05

Ln(T'")

r1.00

0.95

FIG. 1. (a) Forward (T) and reverse (T") transmittivities of
a QRR as a function of system length L for N =M =2: (b)
same as in (a) except N =2 and M =1. Note that the transmis-
sion exhibits exponential decay and fluctuations with length
typical of quantum conduction in disordered systems.

The possibility that they may reduce to different minima
is excluded by the fact that B=0 typically only if T'=0.
The QRR, therefore, is a system in which the transmit-
tance is directed. In one direction the system is opaque
and in the other it has a transmittance which tends to a
quantized value with increasing length. Fluctuations in
the transmittance can of course play an important role
acting like pinholes through an otherwise opaque system.
Samples like these, while being of great interest to theor-
ists, are not typical [9,10].

There are ways in which the directed transmittance of
a QRR may be disturbed. The N forward modes and M
reverse modes of the QRR may not be the only modes in
the system. In general there could be other propagating
modes and evanescent modes. We wish to emphasize that
we have been considering the case of dilute scatterers,
i.e., we imagine a waveguide in which the eigenmodes are
intact, and the scattering events serve to occasionally mix
the modes (unitary “switches” in the railroad). Under
these conditions, the evanescent modes cannot connect
the ends of a macroscopic sample, and hence do not des-
troy the effect. (Unitarity implies that an electron enter-
ing the system in a propagating mode cannot become per-
manently trapped in evanescent modes.) However, if
scattering into other propagating modes in the system
occurs, whether via evanescent modes or directly, it will
alter the predicted effects, since in general it will change
the effective values of NV and M. In the case of an AWH
system, this would correspond physically to scattering an
electron from one edge of the sample to the opposite
edge, a negligibly improbable process for macroscopically
wide samples if the Fermi energy lies in a bulk spectral
gap. Another possibility is that temperature or other in-
elastic processes may disturb the mode structure so that
from one scattering event to the next there are different
numbers of available modes. This will of course destroy
the effect.

In summary, we have introduced quantum railroads, a
general category of disordered systems that includes the
one-dimensional structures that support Anderson locali-
zation, as well as the perfectly conducting edge channels
that characterize the quantum Hall effect. We have
shown that QRR’s exhibit a novel type of localization
that is directional in its nature. We find that the trans-
mission is given by N — M in the majority direction and 0
in the minority direction; this result corresponds to that
obtained previously for the AWH model by topological
arguments.
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