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Shape Oscillations in Growth of Small Crystals
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The equilibrium shape of a large crystal is uniquely determined by the anisotropic surface energy. In
sharp contrast, we show here that the equilibrium shape of a small crystal is not unique, for tempera-
tures below the roughening temperature. Instead, the degree of facetting is an oscillatory function of
crystal size. Using low-energy electron microscopy, we observe oscillations in the shape of silver crystal-
lites as they grow; we demonstrate theoretically that such oscillations with size occur even in thermo-
dynamic equilibrium.

PACS numbers: 68.35.Bs, 61.50.Cj

One of the most fundamental problems in surface
physics is the equilibrium shape of a crystal, which gives
a direct picture of the dependence of surface energy on
orientation [I]. Crystal shape has been understood in

principle since the work of WulA' [2], and further funda-
mental contributions have been made by Herring and
others [1,3]. However, all of this theoretical work ad-
dresses the thermodynamic limit of large crystals. In
contrast, experimental observations of shape are restrict-
ed to very small crystals, since for larger crystals the
shape approaches equilibrium at an intractibly slow rate.

Here we show that small crystals diff'er from large ones
in a fascinating and unanticipated way. The equilibrium
shape of small crystals is not unique at temperatures
below the roughening temperature TR. Instead, the
shape is an oscillatory function of the number of atoms
The oscillations in shape reflect oscillations in the chemi-
cal potential as the crystal grows, with each cycle corre-
sponding to completion of another layer on the flat facets.
Thus the nonunique shape is directly connected to the
fact that the canonical and grand canonical ensembles are
not equivalent for small systems.

We have directly observed shape oscillations in the
growth of small silver crystallites on Si(111),using low-

energy electron microscopy (LEEM) [4]. With growth,
the rounded corners of the crystal fill in and become
sharper, until a step or two-dimensional (2D) island nu-

cleates on the facet. The corners then become rounded
again, and remain so until the 2D island grows to a com-
plete layer. At that point the cycle begins again.

We begin with a very schematic discussion of the shape
of small crystals, which permits us to qualitatively under-
stand the experimental observations. A more detailed
analysis, which shows that such oscillations are a funda-
mental feature of the equilibrium shape of small crystals,
is given below.

Crystal shape generally evolves with temperature as
sketched in Fig. 1. The T=O shape has smooth facets,
here assumed to be flat, which meet at sharp corners as in

Fig. 1(a). Above a temperature To (which may be zero),
the corners become rounded as in Fig. 1(b). The rounded
corners, though macroscopically smooth, are thermally
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FIG. 1. Schematic of crystal shape in three temperature re-
gimes: (a) T & To , (b) To& T & Tg., (c) T &'TR Arrows.
show boundary of one Hat facet. Approximation used for shape
(b) in calculation is shown in (d), along with assumed shape of
2D island (dotted line).

"rough" on an atomic scale [1]. With increasing T, the
rough regions grow at the expense of the flat facets, until
at the roughening temperature TR the facets shrink to
nothing and the entire surface is rough, as in Fig. 1(c).

Even in the equilibrium case of arbitrarily slow growth,
we must distinguish two limiting regimes. At low tem-
perature, evaporation and vapor pressure are negligible.
The crystal in eA'ect has a fixed number N of atoms, and
the shape equilibrates via surface diA'usion. At high tem-
perature, in contrast, evaporation is rapid; to maintain a
steady state the crystal must be in equilibrium with a va-
por, which fixes the chemical potential p. Thus the low-
and high-temperature regimes correspond to the canoni-
cal (constant N) and grand canonical (constant p) en-
sembles. For a sufficiently large crystal, these are
equivalent, but for the small crystals of interest here the
distinction becomes crucial. In our experiment, and in

molecular beam epitaxy in general, we are clearly in the
low-temperature regime.

Now consider the growth of a crystal containing both
rough and smooth regions, as in Fig. 1(b). A su%ciently
large crystal will always have 2D islands on the facets,
due to entropy. A small crystal will not, so atoms added
to the flat facets must initiate 2D islands. Because of the
energy cost of the step at the island's edge, 2D island for-
mation is energetically unfavorable, especially for small
islands (which have a large edge-to-area ratio). In con-
trast, atoms added to the rough region incur no such
penalty. (Thermal roughness corresponds in efI'ect to the
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absence of any formation energy for steps. ) Thus in a
small crystal, atoms added to the crystal will at first go
exclusively to the rough region.

As more atoms are added the corners fill in, until even-
tually the atoms have nowhere to go but to the facets.
Subsequent atoms must form a 2D island on the facet.
The island then acts as a reservoir, pinning the chemical
potential near its large-crystal value, and absorbing the
extra atoms from the corners, which become rounded
again. Once the 2D island grows to cover the facet, addi-
tional atoms have nowhere to go but the rough region,
and the cycle begins again. (However, once enough
atoms have been added to form a complete layer on one
facet, they will leave the rough region to do so, complet-
ing the cycle, even if the corners are not yet sharp. )

We have directly observed this cycle in LEEM images
of growth of Ag crystals. Small epitaxial single crystals
were grown at —500 K by atom deposition on a Si(111)
substrate. A time-ordered sequence of images is shown in

Fig. 2. Only the facet parallel to the substrate surface is
visible, because only the specularly reflected (0,0) low-

energy electron diffraction (LEED) beam at normal in-

cidence was used to form the image.
In Fig. 2(a) the crystal is completely facetted, with

sharp corners. A 2D island (indicated by the arrow) then
nucleates at the upper edge, and spreads across the facet,
Figs. 2(b)-2(d), and the corners of the crystal become
rounded. With the island gone, the rounded corners
gradually become sharp again, Figs. 2(e)-2(h), at which
point a new 2D island nucleates, Fig. 2(i), and the cycle
repeats. In several cases we recorded multiple cycles of
this oscillation in real-time video LEEM. To show the
sharpening more clearly, Figs. 2(i)-2(l) give three im-

ages of a similar but larger crystal, grown at a lower Ag
deposition rate.

We do not expect that our Ag crystallites are fully in

equilibrium. But we have confirmed that the shape of the
crystallite, whether sharp or rounded, is stable in time
when growth is interrupted. This constitutes strong evi-
dence that the nonunique shape is characteristic of equi-
librium, and not an artifact of growth kinetics (a rich
subject in its own right [5]). Nevertheless, given the
unexpected nature of our observations, it is essential to
demonstrate that such shape oscillations are a natural
feature of thermodynamic equilibrium for small crystals.
We illustrate this by explicitly calculating the shape of a
small crystal as a function of the number of atoms. The
necessary and sufhcient conditions for shape oscillations
are discussed further below.

For simplicity, we consider a crystal which at T =0 is a
cube. To make the geometry tractible, we model the
thermally rounded corners as flat (111)-oriented facets
(though still thermally rough). One facet of this corner-
truncated cube is shown in Fig. 1(d). The distance be-
tween cube faces is L, and the length of edge removed by
truncation at each corner is h.

,
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FIG. 2. LEEM images of a Ag crystal lite growing on
Si(111). Ag(111) facet parallel to surface is visible as a hexa-
gon; substrate, other facets, and rounded regions of crystallite
appear dark. (a)-(i) Time-ordered sequence of images showing
full cycle. Each field of view is 1 pm across. Horizontal line
present in all images is step at Ag-Si interface. 2D island (indi-
cated by arrow) forms at the top in (b), and covers all of facet
except small hole by (d); and corners become rounded. With
further growth (e)-(h), corners become sharper, until new 2D
island nucleates (i). (j)-(1) Similar sequence for larger crystal-
lite, where sharpening of corner is more clearly resolved. Hor-
izontal lines are steps at Ag-Si interface.

The crystal shape in the thermodynamic limit is given
by [I]

3 ~rg= —1—
2 J3oo

(2)

where oo and ~„are,respectively, the free energy per unit
area of the flat (001) and rough (111) regions. [We can

r(n) =romin a(m)
m m n

where cr(m) is the free energy per unit area of the sur-
face with orientation m, and ro specifies the overall size
of the crystal. The shape assumed here is fully character-
ized by the dimensionless ratio h/L, the value of which in

the thermodynamic limit we denote tl. Solving Eq. (I)
for g gives
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N =N, +N;+N(,

E =Ec+Ei +E(
(3a)

where

N, = (L ' —4h '/3)/n,

E, =N, e+crp(6L —8gh ),
N; =7rR /4A,

E; =N;s+XrrR/2,

NI =vL'/&,

E( =Nie+4crpvL 0/A .

(3b)

(3c)

(3d)

safely neglect the small difterence between energy and
free energy for the (001) facets, so op is also used below
to denote the energy. ]

To treat the small crystal, we make two observations
regarding thermal fluctuations. First, we note that
thermal fluctuations of the rough region of the crystal
have very short correlation length, much shorter than the
dimension of the crystal. Thus the rough corner region
can still be accurately described by the "macroscopic"
free energy o.„.Second, fluctuations of the facet involve
very long length scales; they consist either of large 2D is-
lands or small islands which are far apart and so have
large positional entropy. For a sufficiently small facet,
such fluctuations cannot occur. While an island will

eventually form on the facet, this does not correspond to a
thermal fluctuation, and must be treated explicitly.

Describing the rough region by a macroscopic free en-
ergy, and explicitly including the possibility of a 2D is-
land on a facet, which may grow to a complete layer, we
have

The crystal shape at a given N is determined by
minimizing the free energy E with respect to h, R, and v,
for fixed N. The resulting values of h and R are oscillato-
ry with increasing N, where each cycle corresponds to
adding a layer to the facet (v v+1). As an illustra-
tion, we treat the special case g =0, which arises at
T = Tp. This case is convenient because E, is then in-
dependent of h, and because the large-crystal equilibrium
shape is simply a cube (h =0). We also assume a large
step energy, X)) croak/2, to guarantee (as seen below)
that the island never becomes large enough for the as-
sumption of circular shape to break down; however, these
specific choices for g and X are not required to obtain
shape oscil lations.

The resulting dependence of crystal properties on N is

shown in Fig. 3. Beginning with the perfectly facetted
cubic crystal of Np=L /0 atoms, as atoms are added
they initially must form an island. However, when the
number of atoms added becomes greater than N„
=16rrpL 0 /H, 2, it is energetically favorable to draw
enough atoms from the corners to complete the layer.
This eliminates the island energy E;, at the cost of addi-
tional surface energy E~. (Since @=0, E, is constant. )
The corners are left rounded, despite the fact that the
large-crystal shape has sharp corners. Any further atoms
which are added then go to fill the corners, until the crys-
tal is again fully facetted for N =Np+L /A, and the cy-
cle begins again. Since either R or h is zero at all times,
the dependence of h or R upon N can be read directly
from Eq. (3) for N; or N, .

We also show in Fig. 3 the chemical potential p
dE/dN vs N. H—ere, p varies dramatically with N. In

particular, there is nominally a divergence of p each time
the crystal becomes fully facetted (h 0); but because

Here N is the total number of atoms and E the total free
energy of the crystal. N, refers to the number of atoms
in the crystal without any islands or extra layers on the
facets, and E, to its energy. L and h are defined above
and in Fig. 1(d). [The last term in Eq. (3b) is the sur-
face energy, where we have eliminated explicit reference
to cr, by using Eq. (2).] N; and E; are the contributions
from the island, and N( and E( are those from v complete
layers added to the facet. 0 is the volume and e the ener-

gy per bulk atom. R is the 2D island radius, as in Fig.
1(d), and k the free energy per length of the step defining
the island edge. (We have assumed that the island forms
a quarter circle at the corner of the facet; the energy of
the extra surface area from the two straight sides can be
absorbed into the value of X.) The extra surface area
created by adding v layers gives the last term in Eq. (3d).
In Eqs. (3c) and (3d) we have omitted additional small
terms which occur when h ~0, but which have no
significant eflect on our discussion.
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FIG. 3. Calculated variation of island size R and corner
rounding h [cf. Fig. 1(d)], and of chemical potential p, vs num-
ber of atoms Ã. Vertical scales are arbitrary. For @=0 case
treated here, p —c=0 throughout range where R =0; to illus-
trate more typical behavior, p is shown for small nonzero g.
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of the discreteness of N, p never actually becomes larger
than an adatom energy. The close relation between p
and h has also been noted by Xiao and Rosenberger [6],
in the somewhat different context of growth from a vapor.

A particularly intriguing feature of Fig. 3 is that, in

equilibrium, there is a discontinuity in all quantities (p,
R, and h) at a critical value of lV;. Since this transition
involves the motion (presumably by surface diAusion) of
a large number of atoms from the corner to the facet, it
cannot take place instantaneously. Thus in any experi-
ment at a finite growth rate, as in Fig. 2, this transition
will inevitably be smeared out as the island, though un-

stable, requires some time to cover the facet.
We stress that none of the approximations made here

affects the basic conclusion, that the shape of a small
crystal is an oscillatory function of N eien in equilibrium.
Including a more accurate shape than that of Fig. 1(d)
would alter the detailed functional form of Eq. (3), but
not its general features. Solving Eq. (3) for a value of tI

other than zero, or for a smaller value of X, would simply
shift the transition point in Fig. 3, and perhaps allow
coexistence of nonzero R and h.

However, the magnitude of the oscillations depends
sensitively upon the conditions. We have focused on the
case of a fully facetted crystal, both because of its simpli-
city and to make direct connection with our experiment.
However, at temperatures closer to TR, where the crystal
is more rounded, the added atoms will have only a slight
effect on the shape before enough atoms have accumulat-
ed to form a full layer on a facet. The more rounded
the crystal, the weaker the shape oscill ation s. As T

TR, the size of the facets approaches zero, and so the
amplitude of the shape oscillations approaches zero.
Also, the larger the crystal, the less the shape will be
affected by the number of atoms corresponding to a layer
on the facet, since this number scales as the 3 power of
the crystal size. As the crystal size becomes infinite, the
relative shape oscillations go to zero.

Previous crystal-shape experiments [I] have typically
been at temperatures near TR, where the crystals are only
weakly facetted, so only negligible shape oscillations
could be expected. Moreover, the crystals studied were
generally somewhat larger than here. In any case, in

static electron-microscope pictures the oscillations would
appear only as tiny shape differences between crystals,
which are difficult to compare since they also differ in size
and orientation. In contrast, by observing the growth of a

single crystal over time, at a temperature where it is al-
most fully facetted, we are far more sensitive to small
variations in shape, while the variations are much larger
than at higher temperatures where the crystal is rounder.

The central remaining question is, what are the neces-
sary and sufficient conditions for shape oscillations. For
tl ) 0 (To( T ( TR), if the crystal is so small that there
are no thermal fluctuations on the facet, there clearly
must be shape oscillations. But consider a larger crystal.
There will then be thermally induced islands (and holes),
but no thermally induced steps crossing the facet. As
atoms are added, they may go to the rough region, go to
the terrace (by changing the island distribution), or nu-
cleate a step across the terrace. If there is a sufficiently
high cost in free energy to change the island distribution,
then the situation becomes just as for a small crystal,
with the thermal islands playing no role except in deter-
mining the surface free energy ap. While a treatment of
the thermal distribution of islands and its dependence on
the number of atoms is beyond the scope of this paper, it
thus appears likely that shape oscillations may occur even
for large crystals in equilibrium, though these oscillations
must be far too small to detect.
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