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Chiral Symmetry Breaking in Langmuir Monolayers and Smectic Films
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Langmuir monolayers and freely suspended smectic films can exhibit a spontaneous breaking of chiral
symmetry. The order parameter that characterizes this symmetry breaking is coupled to variations in

the direction of molecular tilt. As a result, chiral symmetry breaking leads to the spontaneous formation
of complex equilibrium patterns with either 1D or 2D modulations in the direction of molecular tilt. A
Landau theory for this pattern formation gives a general phase diagram, which includes a uniform non-
chiral phase, a striped pattern, a square lattice, and a uniform chiral phase.

PACS numbers: 64.70.Md, 61.30.Cz, 6S.10.—m, 68.15.+e

It has long been recognized that there is a close con-
nection between molecular chirality and pattern forma-
tion in liquid crystals. In bulk three-dimensional (3D)
systems, chiral molecules can form a cholesteric phase,
with a helical pattern of twist in the molecular director,
and a smectic-C* phase, in which the director rotates
from layer to layer [1]. In thin films, chiral molecules
can form a striped pattern of parallel defect walls [2], as
well as spiral star defects [3]. More recently, experi-
ments on Langmuir monolayers [4,5] and freely suspend-
ed smectic films [6] have found that similar striped pat-
terns and spiral star defects can occur in 2D systems of
nonchiraI molecules. In these systems, chiral symmetry
is spontaneously broken, leading to a chiral phase com-
posed of nonchiral molecules [7]. To understand these
experiments, we must examine how chiral symmetry
breaking leads to pattern formation in 2D systems.

In this paper, we construct the free energy for a pseu-
doscalar chiral order parameter tlt(r), which is coupled to
the curl of the 2D tilt director field c(r). By minimizing
this free energy, we obtain the mean-field phase diagram
of Fig. 1. At high temperatures, the phase diagram
shows a uniform nonchiral phase with y=0. At a critical
temperature, there is a transition into a striped phase,
with a uniaxial modulation of both tlr and c. (This striped
phase is a generalization of the bend stripes discussed in

Ref. [7].) The amplitude of the modulation of y grows
with the mean-field critical exponent p= 1, in contrast
with the Ising mean-field exponent p= —,'. The striped

phase exhibits two distinct regimes: a sinusoidal regime
with smooth variations of y and c and a soliton regime
with a series of sharp domain walls. Between these re-

gimes, the system can form a 2D modulated phase, with a
square lattice of tilt vortices separated by domain walls.
At low temperatures, there is a uniform chiral phase. In
addition to the phase diagram, we also investigate chiral
fluctuations in the high-temperature, nonchiral phase,
and we examine the eA'ects of these fluctuations on the
transition to the striped phase.

In a Langmuir monolayer, chiral symmetry can be bro-
ken through several possible mechanisms. First, if the
monolayer is in a tilted hexatic phase (as is suggested by

the observation of star defects [4]), the tilt direction can
be locked at an angle between 0 and 30 from one of the
local bond directions. This relation between tilt order
and bond-orientational order breaks chiral symmetry. As
discussed in Ref. [7], the chiral order parameter would be

y(r) =sin[6[P(r) —0(r)]], where p is the tilt azimuth
and 0 the bond orientation. Second, even if the mono-

layer is not in a tilted hexatic phase, the molecules might
pack on the 2D surface in two inequivalent ways that are
mirror images of each other. The chiral order parameter
would be the diA'erence in the densities of the two pack-
ings. Third, if the monolayer is composed of a racemic
mixture of two opposite enantiomers, the racemic mixture
can separate to form chiral domains. In that case, the
chiral order parameter would be the diAerence in densi-
ties of the two enantiomers.

In a freely suspended smectic film, the mechanism for
chiral symmetry breaking depends on the thickness of the
film. In a thin film, the 3D molecular director n is uni-

form across the thickness of the film. If the top and bot-
tom surfaces are equivalent, n is equivalent to —n. Thus,
a tilted hexatic film of cylindrical molecules always has
an inversion symmetry, regardless of the relation between

FIG. 1. Mean-field phase diagram for chiral symmetry
breaking in a 2D film. The parameter t represents temperature,
while k is the coupling between the chiral order parameter y
and the curl of the tilt director field c. This phase diagram is a
schematic view, not drawn to scale.
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tilt order and bond-orientational order. Hence, sin[6(p
—8)] is not a chiral order parameter for a thin smectic
film. Chiral symmetry can still be broken by the other
two mechanisms described above —either packing of mol-

ecules in the film or phase separation of a racemic mix-
ture. By contrast, in a thick film, n is not uniform across
the thickness of the film. Hence, the top and bottom lay-
ers are each equivalent to Langmuir monolayers, and all

three mechanisms are possible.
The general free energy for chiral symmetry breaking

in a Langmuir monolayer or a smectic film can be written
as

F =J d r[ —,
' x(Vy) + —,

' ty + 4 uy" + 2 Kl(V c)

+ —,
' K3(V x c) —X@Vx c] .

Here, the 2D tilt director c =(cosp, sing) is the (normal-
ized) projection of the 3D molecular director n into the
x-y plane. (We neglect variations in the magnitude of
the tilt. ) The 2D curl Vxc can be written as z Vxn in a
Langmuir monolayer, and as n Vxn in a thin smectic
film. The first three terms in F are the standard
Ginzburg-Landau expansion in powers of y. The coef5-
cient t passes through 0 as a function of temperature.
The next two terms are the Frank free energy for splay
and bend variations in c. We will make the single-
Frank-constant approximation K] =K3——K, so that these
terms simplify to 2 K(Vp) . The final term is the cou-

pling between the chiral order parameter and the director
field. It is permitted by symmetry because both y and
Vxc change sign under reflection. This coupling term is

similar to the V&c term that has been considered in

theories of smectic films of chiral molecules [8-11],but
here V&c is multiplied by a chiral order parameter that
can itself vary across the film.

The mean-field phase diagram is shown schematically
in Fig. 1. It was found by numerical minimization of the
free energy using the conjugate-gradient algorithm on a
100-site 1D lattice and on a 100x 100 square lattice, with

periodic boundary conditions. This phase diagram is ex-
pressed in terms of the temperature t and the coupling k
for fixed K, x, and u. Figure 2 illustrates the resulting
patterns as t is decreased with k constant. From the uni-

form nonchiral phase, there is a second-order transition to
the striped phase. Just below the transition, both y(r)
and p(r) are modulated sinusoidally [Fig. 2(a)]. The
wavelength of the modulation decreases as t decreases.
At lower temperature, the striped pattern becomes more
disordered [Fig. 2(b)]. This disordered pattern may be
only a metastable state, but experimental systems exhibit
similar metastable labyrinth states [12]. As t decreases
further, there is a transition to a square lattice of cells
with alternating positive and negative chirality [Fig.
2(c)]. Finally, the striped phase reappears at low temper-
atures [Fig. 2(d)]. The stripes now appear as domains
with constant y and linear variation in p, separated by
domain walls (or solitons) in which y changes sign. The

1140

width of the stripes now increases as t decreases, and it
diverges at the transition to the uniform chiral phase.

To understand the behavior in the sinusoidal-stripe re-

gime, we make the variational ansatz y(r) =ypcosqx,
p(r) =ppsinqx. Inserting this ansatz into Eq. (1) gives
the free energy per unit area,

F/A = —,
'

xq yp+ —,
'

tlap+ —,', uyp

+ 4 Kq'yp &qx—pJ i(ep) (2)

By minimizing this free energy over the amplitudes yo
and pp and the wave vector q, we find that there is a
second-order transition from the uniform nonchiral phase
(yp=gp=O) to the striped phase at the critical tempera-
ture t, =X /K. Near this transition, we obtain

yp pc (t, —r ),
yp ~ q ~ (r, r) '~'. —

(3a)

(3b)

In this mean-field theory, the striped phase forms at
infinite wavelength at t„and the wavelength then de-
creases as the temperature decreases. The critical ex-
ponent P =1 for the amplitude yp is surprising because it
differs from the Ising critical exponent P= —,

'
in mean-

field theory. Of course, we would expect thermal fluctua-
tions (discussed below) to modify the mean-field predic-
tions for the critical exponents.

In the lower-temperature soliton-stripe regime, the be-
havior of y(r) and p(r) is quite different. Here, we have
a series of stripes in which y= ~ (~t ~/u) '~ is approxi-
mately constant and P increases linearly, separated by
discrete solitons, i.e., sharp domain walls across which y
changes sign. The free energy is the sum of the solid free
energy, the Frank free energy for variations in p, and the
X coupling. If the width of each stripe is l, the resulting
free energy density is

F 1 2A~t~' (4)
2 1/2

Minimizing this expression over l gives

l=
2 ~gg'~ [r['~ —x'~ [r[ ~

Note that the stripe width l now increases as the temper-
ature decreases (as t becomes more negative), the oppo-
site trend from the sinusoidal-stripe regime. When
t = —

A, (8u/x) '~, the positive soliton free energy exceeds
the negative k coupling, and hence the stripe width
diverges. At this point, there is a transition into the uni-
form chiral phase.

In addition to the striped phase, we also find a 2D
modulated phase, which consists of a square lattice of l xl
cells. Inside each cell, the chiral order parameter y= ~ (~t ~/u) '~ is approximately constant. The cells are
separated by sharp walls across which y changes sign.
This lattice of alternating chirality induces a vortex in

c(r) at the center of each cell and an antivortex at each
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FIG. 2. Patterns formed at several temperatures along the line A, =4, K=K'=u=1 (in units where the lattice constant is 1): (a)
t =15; (b) t =7; (c) t = —1; (d) t = —17. In (a)-(c), the positive or negative value of y is indicated by the gray scale. In (d), both
y and p are shown as functions of x across the stripes.

corner where four cells meet. The free energy of this lat-
tice is again the sum of the soliton free energy, the Frank
free energy, and the k coupling, but now the Frank free
energy is logarithmic in l because of the vortex-antivortex
interaction:

F 2 2kiti'
I

where a is the vortex core radius. Comparing Eqs. (4)
and (6) shows that the square lattice is preferred over the
striped phase if In(l/a) &tr. Thus, the square lattice is
favored only when the spacing I is of order the vortex core
radius. For that reason, the square lattice appears in the
region of the phase diagram between the sinusoidal
stripes and the soliton stripes, where l' is minimal.

To gain further insight into chiral symmetry breaking
and pattern formation, we go beyond mean-field theory
by integrating over the thermal fluctuations in the direc-
tor field (without assuming &&&1) to obtain an effective

free energy in terms of the chiral order parameter alone.
This integration can be performed as an expansion in
powers of y. The leading-order terms gives

1F,tt = — d 'r x-(V y) '+ t — y'2~ 2K
2

k kaT r —r'+
2 2 J d rd r'ttt(r)y(r')

16+K a a

(7)
where a is the short length scale cutoff, and ti=kttT/
2trit'. (In any tilted phase 0 & rt & 4, because tilt order is
destroyed by thermal fluctuations for ti ) 4 [13].) Equa-
tion (7) shows that fluctuations in P induce an effective
"antiferromagnetic" long-range, power-law interaction in
Itti. This interaction is similar to the dipole-dipole interac-
tion in monolayers of polar molecules, which also leads to
pattern I'ormation [14], except that the exponent varies
continuously as a function of temperature. Equation (7)
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gives the spectrum of chiral fluctuations in the uniform
nonchiral phase:

&~tlt(q)~'&= (8)t+ tcq' —(X'/2K)b(t))(qa)"
'

where b(rl) =2 "I (I —rl/2)/I (I + t)/2) = 1. As the
temperature t decreases, Eq. (8) predicts an instability at
the nonzero wave vector q = [). rib (rl) a "/4tcK] 'll

whereas mean-field theory predicts an instability at q =0.
This finite-wave-vector instability is the 2D analog of the
3D Brazovskii instability [15]. Because of this instability,
we expect the transition from the uniform nonchiral
phase to the striped phase to be weakly first order.

The predictions of this paper could be tested experi-
mentally in several ways. First, one could measure the
stripe width as a function of temperature in both the
sinusoidal and soliton regimes. Experiments on smectic
films [6] have found that the stripe width increases as
temperature decreases in the soliton regime, in agreement
with Eq. (5). Second, one could measure the chiral order
parameter in a tilted hexatic phase using x-ray scattering,
and compare the critical behavior with our predictions.
Third, one could apply a strong magnetic field h in the
layer plane, which couples to the director c. A straight-
forward extension of our mean-field theory predicts that
the striped pattern will set in at the finite wave vector

q =(ht, /Kx) 'I, and that the amplitude of the chiral or-
der parameter will scale with the Ising mean-field ex-
ponent P= —,'. Fourth, one could study Langmuir mono-

layers of "bola-lipids" with t~o headgroups per molecule.
I n these monolayers, there is a symmetry under c —c,
which forbids the k coupling in the free energy and des-
troys the mechanism for pattern formation discussed
here.

As a final point, the theory presented here also applies
to splay stripes in the nonchiral phases of Langmuir
monolayers [7] if we replace the coupling XtltVxc by
XVV c in the free energy and rotate c by 90 . Here,
+(r) can be any scalar order parameter that varies across
the monolayer. Earlier papers [10,11] have taken + to be
a stiff order parameter with a nonzero average value.
However, + could also represent the concentration
difference in a two-component monolayer. As we pass
through the phase separation transition, this order pa-
rameter would become a soft mode, analogous to the
chiral order parameter y considered above. Thus, phase
separation should also induce pattern formation in mono-
layers. From the phase diagram of Fig. 1, we would pre-
dict stripes of alternating composition and a square lat-
tice with cells of alternating composition. This phe-
nomenon should not occur in thin smectic films, because
the coupling XVV. c is forbidden by the n —i symme-
try.

In conclusion, we have developed a general theory for
chiral symmetry breaking and pattern formation in 2D
systems. In future work, this theory could be extended in

two ways. First, one could study the effects of thermal
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fluctuations on the low-temperature, ordered phases, and
on the phase transitions discussed in this paper. Second,
one could investigate whether similar chiral symmetry
breaking could occur in bulk 3D systems. For example, a
racemic mixture of chiral, cholesteric-forming molecules
could separate into regions of each chirality. We conjec-
ture that this system would form a pattern of cholesteric
slabs with alternating directions of molecular twist, or
perhaps a 2D square lattice of cholesteric bars or a 3D
cubic lattice of cholesteric cubes. By examining such sys-
tems, one could determine how the general connection be-
tween chiral symmetry breaking and pattern formation
extends to higher dimensions.
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