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Hesitation Phenomenon in Dynamical Hysteresis
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The effect of the sweeping velocity on the hysteresis loop of a bistable system is examined in the case
where the velocity is so large that the system is prevented from undergoing any transition during the for-
ward sweep. The experiments, made on optical and electronic devices, evidence a dramatic instability
("hesitation") of the return path of the hysteresis loop for a critical value of the sweeping velocity. The
main features of this generic phenomenon are well covered by a one-dimensional analytic theory which
provides scaling laws in good agreement with the observations.

PACS numbers: 64.60.Ht, 42.65.Pc

The phenomenon of hysteresis is common to various
systems in physics, mechanics, chemistry, etc. We report
in this Letter on new effects incidentally uncovered in the
course of an experimental study of dynamical hysteresis
in optical bistability. Optical bistability [1,2] provides an
example of purely deterministic hysteresis, observed in

the absence of fluctuations. On the other hand, hysteresis
is also commonly associated with first-order phase transi-
tions, primarily governed by fluctuations. In fact the dis-
tinction between these two types of hysteresis is not clear
cut. Intrinsic fluctuations and technical noise are indeed
unavoidable in bistability experiments and deterministic
effects play an important role in the dynamics of first-
order phase transitions. We notice in particular the
current interest in the search of quasicritical phenomena
near the absolute boundaries of metastability in such
transitions [3]. The phenomena described hereafter, gen-
eric to deterministic bistable systems, are then expected
to occur in a wider class of hysteretic systems.

To be definite we consider a bistable system whose
steady-state characteristic x vs p is an S-shaped curve as
given in Fig. 1. x is the output variable and p is one of
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FIG. 1. Steady-state characteristic of a bistable system and
standard sweeping scheme.

the external parameters controlling the system. In the
absence of fluctuations, the states corresponding to the
upper and lower branches of the S are strictly stable,
whereas those belonging to the intermediate branch are
unstable. If the control parameter p is adiabatically
swept forth and back through the bistability domain
(ptt & p & p~), the system describes an hysteresis cycle
as shown in Fig. 1. In any real experiment the sweep
duration r is obviously finite and dynamical effects occur
[4] even at low sweep rate because of the divergence of
the evolution times in the vicinity of the turning points 8
and B (critical slowing down) [1,2]. The hysteresis loop

actually observed depends on the sweeping velocity
v=dp/dt. For moderate velocities, the clear-cut transi-
tions AA' and BB' are generally smoothed and delayed,
and the hysteresis loop widens. The first optical study of
these phenomena has been made on a CO2 laser with an
intracavity saturable absorber [5], and quantitative re-
sults, including scaling laws, have been recently obtained
on a bistable semiconductor laser [6] and on a passive
bistable device [7]. Qualitatively different phenomena
occur when the sweeping velocity becomes so large that
the system may be prevented from switching up during
the forward sweep although the control parameter p goes
beyond the critical value p~ [4,8]. In this regime, so-
called frustrated switching [9], we evidenced —for a par-
ticular value of the velocity —a dramatic sensitivity of the
return path of the hysteresis loop to very small changes of
the experimental parameters. The return path seems
then to "hesitate" between quite different trajectories, a
phenomenon largely overlooked in previous works.

Our first demonstration of hesitation was made in ab-
sorptive all-optical bistability. The experiments were
realized at a millimetric wavelength (X =3.5 mm) and
the experimental setup, adapted from that extensively de-
scribed in Ref. [10], consisted of a 23-m-long waveguide
Fabry-Perot cavity filled with HC' N gas at low pressure.
The source and the cavity were tuned to the frequency of
the (I) 0-1 rotational line of HC' N which behaves then
as a saturable absorber. The output variable and the con-
trol parameter were, respectively, the power transmitted
by the cavity and the voltage applied to the modulator
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FIG. 2. D nam' .
y mical hysteresis loops in absorptive optical bi-

stability. Sweeping duration r = (a) 250, (b) 167, and (c) 138
(c, with a vertical magnification &&2.3. The

static loop (dashed line) is given for reference.

controllin the in utg p power. We used a triangular volt-
age with equal rise and fall times (r), according to the
scheme of Fi . 1.g. . The hysteresis loops were recorded
sweep by sweep (no accumulation) and, if necessary a

well time was arranged between successive sweeps i

der to start each sweep from equilibrium.
ps in or-

The recordings of Fig. 2 were obtained for a same
sweeping amplitude and different sweeping durations,
s ort enough to be in the regime of frustrated h

or r ps, the return path of the hysteresis loop
crosses the upper branch of the static cycle for values of
the control parameter p larger or even smaller (subcriti-
cal switching [4]) than the critical value p~ [Figs. 2(a)
and 2(b)]. For r & 138 ps (not shown), the return path

e p enomenon ofremains close to the lower branch. Th h

esitation occurs for r =138 ps. Figures 2(c) and 2(d)
show the trajectories obtained for 23 different sweeps
ac ieved in identical conditions. The uncontrolled
chan es of theg gas, source, and/or sweeping parameters
from sweep to sweep are sufficient to generate quite
different return paths, crossing either the upper or the in-
termediate branch of the steady-state characteristic. The
separatrix between these two types of trajectories is obvi-
ously expected to run through the turning point B. This
separatrix —analogous to those considered R f. [4]

'

s ig t y different context —corresponds to a well-defined
re ation between the experimental parameters and the
hesitation simply evidences that this relation is very criti-
cal. Its fulfillmlment with the required precision is then
quite unlikely and this explains in particular why the

turning point B seems to be avoid d b th
'

e y e trajectories of
igs. 2(c) and 2(d). Various experiments for different

sweeping amplitudes showed that the smaller the relative
overdrive, D = p~ pg )/(pg po), the more pro-
nounced the phenomenon and the smaller the correspond-
ing sweeping velocity v, .

All t he observed dynamical behaviors are well repro-
uced by numerical simulations using the standard ring

cavity model in the plane wave and uniform field a roxi-
mation [2]. In ourn our case of purely absorptive bistability,

m e approxi-

this model involves three real dynamical variables. The
calculations were mre made with parameters representative of
the experiments, namely, tc/) & =x/y~~ =2.7 and C =20 in

the standard notations [2]. We explo d 'dexpore a wi e range of
overdrives, including situations such that D&&1 diffi
o address experimentally because of the dable

drifts of the parameters. We found that i., scales as D
with a precision better than 5% for 0.01 ~ D ~ 0.5.

Comomp!ementary experiments were made with an elec-
tronic circuit designed to model th de yn arnica equation
generic for one-dimensional bistability:

dx/dt = F(x,p) =3x —x 3+p .

The corresponding steady-state characteristic is a well-
eveloped symmetrical S. Quite generally, the steady-

state characteristic is the boundary b t he ween t e regions
where dx/dr =F & 0 or & 0 d h'an t is simple remark
suffices to explain the main features of the h

oops observed in dynamical regime (Fig. 3). In the con-
itions of frustrated switching the forward path keeps

below the S, and x and p increase (F & 0 d /d
o e reversal point M where the sweep rate chan es

si n. thg . p en decreases whereas x continues to
'

ra e c anges

and the tra'
i ues o increase

an e trajectory unavoidably crosses the S. At the
crossing point, the output signal reaches its maximum
(F=0) and finally decreases (F & 0). The S is thus the
ocus of the maxima of the traces [11] which lie on the

upper [Fig. 3(a)], intermediate [Fig. 3(c)], or lower [Fig.
(e)] branch according to the sweep t . Leep ra e. et us notice

rane can in particulart at the negative-slope unstable b h

be mapped out from a suitable set of traces generated by
varying the sweep rate and eventually the overdrive D.
Small D indeed a l,ow us to obtain clear-cut maxima, but
larger D may be required to map the region close to the
turning point B when the hesitation phenomenon itself
prevents these points from being attained, as evidenced in
the optical experiments [Fig. 2(d)]. On the contrary, ow-

ing to a much lower level of fluctuations, this

small D with our electronic device in the hesitation re-

allowed us to also study experimentally the dependence of

again that v, scales as D ~, a law fulfilled with a pre-
o . . e finallycision of 3% for D ranging from 0.03 to 0.5. We fi

examined the effect of the fluctuations, simulated by add-
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in a white noise o et the control voltage. Although deter-g
'

henomenon resists the Auc ua-ministic, the hesitation p eno
O%%u f theFor rms voltages of noise gaslar eas 3 oo etions. or

i nificantl modifieover rive, e
'

i nid ', th critical velocity is not signi
rom theted the trajectories depart sooner from

separatrix in e pin the resence of noise an avoi e
riments.[Fi . 3(f)], as in the optical experimen s.-.-l,h"--" -dThe hesitation is a quite genera p

Moccurs whenever a bistable system, p pre ared in a state
is a small positive quantity and x~ is

compara erable to or smaller than x~, is su jec e
b usin an

Position to eth reversal point indepen ently o e ne
W 1 note here that reducing x~no fortiv p . Wve swee rate. We on y no

in the overdrive for a givena iven overdrive (as re ucing e
r andx ) ets the "hesita ing"h '

t "return paths to run coser an
d from each other sooner anndcloser to 88 and to iverge rom

A. This naturally leadssooner after their passage close to . is n

he hesitation mainly originatesto the conjecture that t e esi a
in the vicinity of this turning poin . nfrom the dynamics in

the steady-state characteristic o anythis region t e s e
roximated by adimensional bistable system can be approxima

arabola [12] and the dynamical equation reads
2dxldt =a(p —pg)+P(x —xg g (2)

CONTROL VOLTRGE p [.'V)
loo s in one-dimensional bista-FIG. 3. Dynamical hysteresis loops in

i' = . b ) 350, (d) 193, and (e) 25 ps.y o =(a), (),
ms volta e of noise equal to o oSame as (c) with a rms vo g

( y ted frome control parameter. gaby is extrac eoverdrive added to the con ro p
-state characteristic as e in(d h d line) isthe family (c). The steady-s

48 s. TheTime constant of the circuit: ps.given for reference. Time c
d to —6(p &+3 V an —2.5 &Yframeworks correspon~ o

& +2.2 V.

x ected to hold for the n-A similar equation is expec e
railal s stems, the dynamics of which is genera y

bl 'h' """"'fb a sin le master varia e in e v' '

f th' h"'t'tturnin oint [4]. The main features o e e
'

ed b this so-called parabolic ap-
ion. An elementary dimensional ana ysis o q.proximation. n

(2) fi t hows that the critical veloci y v, c
on 1 scale asa state M such that x~ =x~ may onlyD" "g--- - h( —p~), that is, as

t E . (2) can be analytically in-our observations. In fact, q.
f the Air functions when the sweep istegrated in terms o y

linear [13]. The equation of the trajectories in e p
(p, x) reads

x =1 —v
' [Ai'(()+k Bi'(g)j/[Ai(()+k Bi(()], (3)

(4)

k( )=0 and Eq. (4) reduces to v, = D
.( )a' 3, where ai = —1.019 is the first zero of Ai (g

im lies D((1, but a complete calculation shows t at e
h 1% up to D = 1. The previous re-precision is better than c up

=v (1 —p). All the quantities introduce inwith g=v 1
—p .

and have been suitablyEq. (3) are dimensionless and x an p av
shifted and scale so ad that the steady-state parabola looks

Fi . 4. Note that the lower and upperas shown in Fig. . o e
le res ec-f he arabola are stable and unstab e, pbranches o t e para

nd the turningtivel, and that the second stable branch and e
oin this model. The separatrix ofoint B are at infinity in is m

d fined as separating the trajectoriesthe hesitation, now e ne
~ ~ 0

1
0f llin down, must bring the bistabi ity ondiverging up or a ing ow,

stable branch of the parabola at the end of the neg-
e =0), that is, P ig.a

) d 11 h

trix C(v, ) for a prescribed critical velocity v = —v, .o, ' 've swee rate starts from any
oint M of C(v, ), v, and the part p & pM of C v, wi

be the critical velocity an e
1 . A remarkable point of C(v, is its in-tion, respective y. re

with the parabola axis x =x~ = antersection wit p
(v ) b the correspond-'t nvenient to characterize v, y e co

ing overdrive D. Putting x =1 in Eq. (3), we ge

Ai'( —v D)+k(v, )Bi'( —v, ~ D) =0.C

1137



VOLUME 70, NUMBER 8 PH YSICAL REVIEW LETTERS 22 FEBRUARY 1993

ax (p ) =4trgt5p (&/D ) 'l'exp(4&'l'/3) . (6)

The "superexponential" divergence of Ax for g) 1 ex-
plains why very small changes of the sweeping amplitude
lead to quite different trajectories (Fig. 4), especially
when the reversal point M approaches the turning point 2
((—I/D). Equation (6) also shows that reducing hp

suits are general and directly apply to the sweeping
scheme of Fig. 1. The symmetry of the sweep and that of
the initial and final states (Fig. 4) indeed imply that the
separatrix and the corresponding forth trace are sym-
metric with respect to the parabola axis [see Eq. (3)] and
thus that the reversal point M has the same ordinate as
the turning point 2, as clearly evidenced in our experi-
ments [Figs. 3(b), 3(c), and 3(f)]. The critical character
of the hesitation is also well described by the parabolic
model. To be definite, let us again consider the sweeping
scheme of Fig. 1 in the limit D (( I (k =0 for the separa-
trix) and examine the effect of a very small change dp of
the sweeping amplitude (t5p«D). The reversal point is
then invisibly displaced on the forth path. For hp ) 0, k
takes a very small negative value and the return path,
first undistinguishable from the separatrix, leaves it up-
wards when Bi(g) becomes large enough so that the first
zero of Ai(g)+k Bi(g) is approached [see Eq. (3)]. On
the contrary, the system relaxes down if Ap (0 (Fig. 4).
The deviation hx of the return path from the separatrix
can be explicitly calculated at the first order in hp:

Wx(p) =gl3.pD 'l'Ai '(&),

with g =2ia[i 'l Ai(ai)iAi"(al)i =0.59 and g =iaIi(1
—p)/D, the velocity being eliminated by means of Eq.
(4). A reasonable estimate of hx in the region p ( I D—
is given by the asymptotic expansion of Ai(g):

shifts the manifestation of the divergence towards lower p
and makes this divergence more abrupt [g—(1 —p)].
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