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Critical Roughening of Interfaces: A New Class of Renormalizable Field Theories
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A renormalizable field theory is developed for (multi)critical roughening of interacting interfaces
in systems of dimension d & 3. There is an infinite hierarchy of universality classes that mirrors the
series of multicritical points in Ising systems. The relevant operator algebra of these theories is built
up by local scaling fields that are singular distributions of the basic field variable. Critical indices,
e.g. , the exponent n, of the specific heat, are obtained analytically in an e expansion. The extension
of our results to d = 3 is discussed.
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In recent years, much effort has been devoted to
the study of low-dimensional manifolds such as domain
boundaries, interfaces, polymers, or membranes. New ex-
perimental tools have been developed that make it possi-
ble to probe these objects in much detail. The structure
of surfaces and interfaces can be studied on a microscopic
scale using surface x-ray and neutron scattering, and even
one-dimensional domain boundaries or surface steps can
now be observed directly by atomic force microscopy.

The statistical mechanics of these systems is governed
by the interplay between intermolecular forces and fluc-
tuations due to thermal excitation or quenched disorder.
If these fluctuations are strong enough, a single manifold
is in a scale-invariant rough state. Ising domain walls in
two dimensions or in three dimensions above the rough-
ening temperature are an example.

In real systems, however, the position of a manifold
may still be constrained by walls or defect planes, or by
the presence of other manifolds, if they lead to an effec-
tive potential that is attractive over a microscopic range
a and tends to zero at larger distances. For example, in
the standard Ising model with a plane of weaker bonds, a
domain wall is subject to an effective potential well; if the
spin-spin interactions or the structure of the defect plane
are more complex, the potential may have both attractive
and repulsive parts within the range a. The discussion
in the sequel includes such more general potentials.

At low temperature or weak quenched disorder, the
manifold is then localized to the position of lowest en-

ergy up to fluctuations of order a and is hence smooth
on larger scales, while at high temperature or strong dis-
order, it is in a delocalized state with shape fluctuations
on all scales up to the size of the system. The rough-
ening, netting, or unbinding transition separating these
two regimes [1] may be of first or second order. In the
latter case, the size of typical fluctuations diverges as the
critical point is approached from below. Close to critical-
ity, as they become large compared to a, the fluctuations
wipe out microscopic details of the interactions, i.e. , they
renormalize the binding potential. Universal scaling be-
havior emerges, at least for suKciently short-ranged po-
tentials.

So far, this type of transition has been studied
by transfer matrix calculations for interfaces in two-
dimensional systems and by functional renormalization
group methods applied to the binding potential [2]. The
latter methods reveal a rich pattern of fixed points in
systems of dimension d ) 2 [3]. However, the status of
these results remained somewhat unclear since the func-
tional renormalization involves various approximations
and does not provide a systematic way of calculating
measurable quantities, such as critical exponents [4].

In this Letter, we show that critical roughening tran-
sitions with short-ranged potentials define a new class of
renormalized continuum Beld theories and, in a system-
atic s expansion, we obtain the first analytic results on
their critical indices for general dimensionality. We find
an infinite hierarchy of multicritical universality classes
that, in a remarkable way, mirrors the well-known series
of bulk multicritical points in Ising systems. The latter
series is represented by effective Hamiltonians with poly-
nomial interactions gp in terms of the local order param-
eter P(r), where n = 4, 6, . . . . Nontrivial renormaliza-
tion group fixed points bifurcate from the Gaussian fixed
point at the borderline dimensions d„= 2+4/(n —2) and
describe fiuctuation-dominated critical (n = 4), tricriti-
cal (n = 6), or higher multicritical behavior beloto that
dimension. For roughening transitions of [d~~

= (d —I)]-
dimensional interfaces, there is again a series, labeled by
n = 0, 2, . . ., of fixed points bifurcating from the Gaus-
sian fixed point at d~~„——2 —4/(n+ 3) and describing
(multi)criticality above that dimension. More and more
such fixed points appear as d]] approaches 2. The basic
objects that build up these field theories, the local scal-
ing Belds, are very different from the Ising series: they
are no longer polynomials in the basic field variable P(r),
but singular distributions, see Eq. (2) below.

Consider the effective Hamiltonian

in terms of the interface displacement field P(r) of canon-
ical dimension —( = (d,

~

—2)/2 ( 0. For d ( 3, the ki-
netic part describes a thermally rough interface on length
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scales larger than the bulk correlation length of the sys-
tem, where overhangs can be neglected. The interface is
subject to a translationally invariant effective potential
V (P) of microscopic range a [i.e. , V~(P) = a "v(a &P),
the dimensionless shape function v(z) varying with arn-
plitudes of order 1 for Izl (1 and decaying rapidly to zero
for I zl) 1], which is treated as a perturbation of the Gaus-
sian theory (V~ = 0). In the continuum limit a ~ 0,
V (P(r)) becomes a distribution in the field variable P(r)
and can hence be expanded in the basis of distribution-
valued scaling fields

e„"(r) =v'4~(~ l
&g(~))

)k
c) r) (2)

(k = 0, 1, 2, . . .) .

These "bare" Gaussian fields have canonical scaling di-
mensions

xk = (0+1)(.

In any dimension d ( 3, only finitely many of them are
relevant; they span the space of bona fide renormalizable
binding potentials. The fields CD~, C2~, . . . are even, the
fields C P, 4g, . . . are odd under the Zz symmetry P ~
—P of the Gaussian theory.

The Gaussian correlation functions of the fields C k~(r)
are independent of the short-distance cutoff a, just like
those of normal-ordered composite vertices: Pk(r)
However, in order to define these correlation functions,
the functional integral has to be regularized in the in-
frared, e.g. , by adding a "mass" term to the Hamilto-
nian: && ——f dd~~r[(VQ)~ + p~P ]. This is equivalent
to studying the roughening in a finite layer, since the
mass term p, P effectively restricts the transverse shape
fluctuations to a finite width of order p ~. The univer-
sal quantities to be calculated below, which depend only
on the short-distance structure of these correlation func-
tions, are independent of p, in the thermodynamic limit"

(3)
Using the regularized Hamiltonian '8„, we obtain

( ~ kg ( ~ k~
(c', ( ) . c' ( )) =

I

.
I (« ~(4( )+0 ) « ~(4( )+0 c')),

I 0 N $1='''=/IV =O

with

(4)

(V'4rrb(p(rr) + pr) V'4 6(p(re) + 4)v))y, ——

1V

) . &p(rn —rn )VnV~ + z) 4~qn
'=1 a=i

(5)

the free massive propagator

ap r
&~(r) = (4(0)4(r))~ ~ d"' p,p2+p2

is the sum of its scaling part

—& ( ) =—G ( ) —G' (o) = —
I

I"[I+O(J
' ')]

(normalized for convenience) and the contact term

G„(o) = ~(d), )

[with &(d~~) = 2 ~I'(1+ ()/I'(1 —()], which diverges as
@~0.

Note the following crucial feature of the correlation
functions (5), for example, the two-point function

(C'0(0)C'0(r))p =»p(r) '[2G'p(0) —&~(r)] '
2/A(d~~)p Ir [1 + O(lprl ' ')]

(9)
Unlike the correlation functions of two and more points
at a bulk critical point, they do not tend to a finite limit
as p —+ 0: the cHtical theory vanishes. This property
ensures that in the thermodynamic limit, bulk correla-
tion functions decay on the scale of the bulk correlation
length, which remains finite at the critical roughening
transition.

However, if the interface is localized by the potential

V and hence there is a finite interface correlation length

()~, the correlation functions of the fields 4k do not vanish
for p, = 0: the one-point function

(C'0 (r)))- - t!)(
*' (10)

gives the return probability to the origin, etc. As (~,

diverges, universal thermodynamic singularities occur in

the derivatives of the interface free energy f, (~~ . For
—"li

instance, the specific heat has a singular term

dd~~~r(C, {O)C,(r))...
Xp

~II
~d~~

—I d~ ~—xo ~ q II
(12)

for d ) 2 [5], since the reduced temperature couples to
the most relevant Z2-even scaling field Co~. Hence as a
function of the reduced temperature, (~~ and c, diverge
with expoIlents v[[

——1/(d[[ —x0) aIld D, = (d[[ —2x0)/(d)]-
x0), respectively.

measures the probability of finding the interface position

P(r) in a microscopic neighborhood of the origin; the
two-point function

c, (0)c, ( ))...-(;, *
I

*'[1+o(l /( I*' *')]

(11)
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In general, the short-distance structure of these correlation functions is encoded in the operator algebra

C'P, (ri)C'i (r2) =).C)i(W'r'-) lr- *" *'+* O (r+)+

with r+ —= (ri + r2)/2, r:—ri —rq. Its coefficients can readily be extracted from the integral representation (6) in

the limit )(r
~

~ 0, at least if Cks, 4 is, and I s are all relevant. By changing the integration variables qi and qz to
qy = qi + q2, performing the Gaussian integral over q, and Taylor expanding all terms analytic in r, we obtain

/4~6(P(ri) + Pi)+47r6(P(r2) + Ps) = A„(r ) & exp — — "
2 ~

+47r6'(P(r+) + P+) (14)

with P~ = (Pi + P2)/2, up to terms involving gradient fields. Inserting this in (5) then shows that the coefficients

CP&(p ) are analytic in their argument and, as )o ~ 0, tend to a finite limit

k l

C)i = ) ) (—1)" "(—2) ~1~"+™
) (m —ji j~)1(jr=0 jr=0

7t' = 'Ri1 + gs d")) r es(r) (16)

with n even. The bare coupling constant g~ has canonical
scaling dimension

n+3( 4
e =dp —x11 =

i d))
—2+

2 g n+3j (17)

if k + l + m, is even; otherwise they vanish by symmetry.

c(j) is defined as (j —1)!!if j is even and 0 otherwise,
and only terms with j1 +j2 & m are included in the sum.

Specifically, consider now an interface subject to a P2-
symmetric potential:

(15) at hand, it is relatively straightforward to renormal-
ize this theory in perturbation theory. Unlike in the case
of polynomial interactions, however, we cannot rely on
Feynman diagrammatics since none of the scaling fields
C»~ has trivial multipoint correlation functions that fac-
torize according to Wick's theorem. Therefore it is ap-
propriate to carry out the renormalization at the level of
the operator algebra, treating all scaling fields C» on an
equal footing [6j.

The interface free energy per area p, "~~ can be ex-
panded in powers of the dimensionless bare coupling con-
stant u~ = p, 'g~,

F(u ) = F(0)+ ) F~u
N=1

and is hence relevant if d~[ is larger than the borderline
dimension d))„——2 — /4(n +)3. With the operator algebra

where

„-~„+iv,(—1)"
N=P Nt

d""riv(C' (o)C' (r2) C'. (riv))„' (0)

is an integral over connected correlation functions of the Gaussian theory. If these integrals are defined with a short-
distance cutoff a, powerlike singularities appear that are to be read off from the operator algebra. For small positive c,
the terms C„"~(CP) &(0) f d )) r2~r2~ "+*"with k ( n generate ultraviolet singularities proportional to a(" "l '+' in
I'"2, additional singularities appear at higher order. They only lead to a cutoff-dependent shift in the critical couplings

g~ of C» and are automatically subtracted if the integrals are defined by analytic continuation to higher dimensions.
But since the regularized Nth order integral is proportional to y, "» ~', the perturbation series is infrared divergent
at order N = d)~/e in the limit p ~ 0. This is cured by the e expansion, which consists in absorbing the poles in e of
(lg) into a renormalized coupling constant u = Z(u)us. To order us, we obtain

5'(u ) = 0'(0) —y. '-(O„)u(0) u —— " ""+O(uo)) u2 +O(u~),1 S„C„"„
(20)

where s11 denotes the surface of the d))~-dimensional unit sphere, and hence Z(u) = 1 —(s~C /2e) u+ O(u ). The
resulting beta function [7]

P(u)—:pO„u = —eu + —"C„"„u'+ O(u')
2

(21)

has the infrared fixed point u' = (2/s„C„"„)e + O(e ).
Additional singularities appear in the perturbation expansion of the bare correlation functions (C» (ri)

& C'P (r)v))&(us). By an analogous argument, we find that to leading order all poles can be absorbed into the definition
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of renormalized fields CI, (u) = Zi, (u)Cg with Zg(u) =
1+ (s„CA",„/e)u+ O(u ) [8]. This determines the scale-
dependent dimensions [7] xg(u) = xI, + snC&„u+ O(u2),
whose fixed point values

x„=xI, (u ) = xq+ "e+O(s )
2gk 2 (22)

govern the infrared asymptotics of the solutions of the
Callan-Symanzik equation.

Thus for each n = 0, 2, . . ., we obtain an interacting
continuum field theory T„ that describes the universal
long-distance behavior of the system (17) at the critical
roughening point above the borderline dimension d]]„, be-
low that dimension, the fixed point 2 is unstable and,
at least for a sufficiently weak potential strength, the
long-distance behavior of the system (17) is Gaussian.
The theory To governs the scaling of an unbound inter-
face subject to a purely repulsive potential, while the
higher theories T2, T4, . . . form a hierarchy of multicrit-
ical universality classes: the fixed point T„has the n
relevant scaling fields 4p, C'i, . . . , C' i (the field C„+i
is redundant and the fields C „,4„+2,C „+3,. . . are irrel-
evant), and we expect a series of crossover phenomena
+n~+n —2~ ~+p

As follows from (16) and (23), all scaling fields 4y
have first-order contributions to their anomalous di-

mensions, which turn out to be negative for some rel-
evant fields Ck. Hence, in contrast to the Ising se-

ries, these fields become more relevant under the renor-
malization group fIow. In the case n = 2, for exam-

ple, the two relevant fields Co and C 1 have dimensions

xp = xp —16e + O(e ) and x& ——x& + 8z + O(e ), re-

spectively, with e = (5/2)(d~~ —6/5). This gives the ex-
ponents v~~

——1/(d —xp) = 5/4 —(415/16)z+ O(e ) and
cps = (dpi 2xp)/(dpi xp) = 1/2 + (245/8)e' + O(E). '

Physically, the anomalous dimensions in (23) describe
the fact that in the universality classes T„, typical in-

terface shape configurations characterized by correlation
functions of the fields C I, difrer from the Gaussian ensem-
ble because a nonzero critical potential well or bump is
present at the origin.

In two dimensions, the only such universality class is
the theory 2p with borderline dimension d~~~p

= 2/3 (all
higher fixed points are unstable). At this fixed point,
the decay of the one-point function (Cp(r))„p,*o and
the two-point function (@p(0)Cp(r))~ p, *o

~r~
*o [1 +

O([yr~*& *o)] is faster than for a free interface; this could
be observed in finite-size studies of the two-dimensional
Ising model with a line of stronger bonds. The results of
the z expansion are also in good agreement with exact
transfer matrix calculations [9].

In three dimensions, there may be an infinite sequence
of universality classes T„according to the c expansion.
The fact that the fields C p acquire anomalous dimensions
indeed suggests that they are an interesting set of observ-
ables with power-law correlation functions even in d = 3,

where an unbound interface is only logarithmically rough.
But for the multicritical theories, low-order calculations
are expected to fail quantitatively (as they do for the mul-
ticritical Esing models [10]), and the exponents should be
determined numerically. This sequence of models is also
relevant from a field-theoretic point of view: Does the
local operator algebra, the analytic continuation of (16),
have the structure imposed by (d~~

——2)-dimensional con-
formal invariance? In analogy to the Ising series, it is
then likely to be related to a minimal conformal theory
[11].

Although we have limited ourselves to the study of
temperature-driven roughening transitions, our approach
should be useful more generally. Issues of interest include
wetting transitions (where the ZZz symmetry is broken)
and universality classes of interacting membranes below
the persistence length (that are distinguished from inter-
faces by the form of the Gaussian propagator G&).
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