
VOLUME 70, NUMBER 8 PHYSICAL REVIEW LETTERS

Vibrational Entropy of Ordered and Disordered Ni3Al
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We have measured the difference in vibrational entropy of Ni3A1 in two states of chemical order: as a

disordered fcc solid solution, and as the equilibrium L lz ordered structure. Data were obtained from

three independent methods: low-temperature calorimetry, temperature-dependent x-ray diffractometry,

and temperature-dependent extended electron energy-loss fine structure spectrometry. We estimate that

at high temperatures, the vibrational entropy of chemically disordered Ni3Al is 0.3ktt/atom greater than

for ordered Ni3A1.

PACS numbers: 63.50.+x, 63.70.+h, 64.70.—p

Recently there has been rapid progress towards under-
standing the thermodynamics of chemical ordering in me-
tallic alloys. There have been many attempts to obtain
ab inI'tio free energy functions, from which phase dia-
grams of stable and metastable phases can be obtained
with better than qualitative success (e.g. , [1]). The free
energy comprises an enthalpy term obtained from elec-
tron energy calculations, and an entropy term obtained
from the cluster variation method. This entropy is a
configurational entropy, calculated with the combinator-
ics of arranging atoms on a crystal lattice, given a partic-
ular state of order. In the ab initio free energies, the
diA'erence in the vibrational entropy of two phases is usu-

ally neglected, although it has been included with the
Debye-Griineisen approximation [2].

It has been known for some time that the entropies of
mixing for concentrated solid and liquid solutions are
larger than predicted from configurational entropy alone
[3], and the solubility limits of dilute solutions show simi-
lar discrepancies [4]. There is only weak experimental
evidence for the importance of vibrational entropy for
order-disorder transformations, however [5-7]. Most evi-

dence is theoretical [8-13]. For example, the mean field

approximation for the free energy of an equiatomic
binary A-8 alloy can be extended to include vibrational
entropy with the Einstein model. Doing so requires
diA'erent vibrational frequencies for A-A, B-B, and A-8
pairs of atoms, denoted co~~, co~q, and co~~, and we must
account for how an increase in the long-range order pa-
rameter causes the replacement of A-A and 8-8 pairs
with A-8 pairs. Minimizing the free energy with respect
to the long-range order parameter I provides the follow-

ing relationship at high temperatures:
r ' 3/2
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This is the well-known Bragg-Williams result, with the
addition of a frequency factor. Here z is the lattice coor-
dination number, and the chemical energy for preference
of like pairs of atoms, V~~+ Vg~ —2V~~, is positive for

ri 3tv a
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If the vibrational frequencies of a disordered (D).alloy
are all in the same ratio to those of an ordered (0) alloy,
Eq. (2) reduces to a logarithmic ratio of the Debye (or
Einstein) temperatures 0:

00
4S„—=S,, —S,, =3Nkgln (3)

In our experimental measurements on Ni3A1 with the
extended electron energy-loss fine structure (EXELFS)
technique, we obtained characteristic vibrational frequen-
cies of the two atomic species in the two states (disor-
dered and ordered) of the material. Equation (3) be-
comes

hS, ,
=3Nkg ln
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Equations (3) and (4) are valid if the phonon dispersion
curves of ordered and disordered alloys diAer only in

scale, and not in shape. While this is unlikely in detail,
we may expect Eqs. (3) and (4) to be qualitatively useful.

Here we report experimental measurements of the
difference in vibrational entropy of an ordered and a
disordered alloy. The material is Ni3A1, which assumes
the L12 ordered structure in thermodynamic equilibrium.

alloys that develop order. For an ordering alloy, we ex-
pect the A-8 bonds to be stiA'er than the A-A and 8-8
bonds (i.e. , coAtt ) co~Acotttt). At finite temperatures, the
lower vibrational entropy of the ordered state will desta-
bilize it with respect to the disordered state, and the criti-
cal temperature for ordering will be suppressed [14]. It
has been argued that including vibrational entropy in the
free energy can cause a substantial suppression of the
critical temperature, even by a factor of 2 [8-10,13].

If we go beyond the Einstein approximation and com-
pare a state, a, of a material having the 3N normal
modes [coi', co2, . . . , to3tv j to another state P, the difter-
ence in vibrational entropy at high temperatures, hS„, is
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We have recently prepared this alloy as a disordered fcc
solid solution by physical vapor deposition onto cold sub-
strates [15], and we used these evaporated films in the
present study. Samples with L12 order were obtained by
annealing these same films at about 400'C for 10 to 30

b x-r
min. The or ered and disordered states were confi d

y x-ray diffraction. We used three independent experi-
mental techniques to measure the vibrational entropy dif-
ference of ordered and disordered Ni Al.

Th
13

he first and most direct method involved me
the difference in heat capacity of the two states of the
material, ACp=Cp Cp, from 63 to 343 K, and then cal-
culating

(5)

Low-temperature heat capacity measurements were ob-
tained using a Perkin Elmer DSC-4 diAerential scanning
calorimeter (DSC) that had been modified with its sam-
ple holder installed in a liquid helium Dewar. Equal
masses (27.7 mg) of the disordered and ordered Ni3A1
materials were placed in the two sample pans of the DSC.
Heat capacity measurements comprised pairs of runs,
with the two samples interchanged in their sample pans
between runs. The diAerence in heat capacities of the
two samples was obtained from the diAerence of these
two sets of runs. Additional calibration runs were carried
out using a NIST sapphire standard of known heat capa-

To counteract instrumental drift, runs were made in
short, overlapping scans over temperature ranges of 60 K
each.

Ftgure 1 presents the indefinite integral of Eq. (5) as a
unction of T. In addition to the experimental data, the

figure also presents the best fit to an integral of the
diAerencerence between two Debye functions with OD =452
and 495 K. Using Eq. (5) over the temperature range of

the experimental data gives a rigorous lower bound on

Deb e model fiy fit over the temperature range from 0 K to
the critical temperature of about 1700 K [16] gives AS,,

= +0.27 k&/atom.
The second method for measuring the difference in vi-

brational entropy was a measure of x-ray Debye-Wailer
factors. X-ray diffraction patterns were obtained with

position-sensitiveMo Ka radiation and an Inel CPS-120 't

detector spanning 120 in 20 angle. Data were acquired
at room temperature and at liquid nitrogen temperature
for samples of the as-evaporated Ni3A1, and material
after annealing. The temperature dependence of the in-
tensities of the diAraction peaks of various order were
fitted to a Debye-Wailer model. This procedure resulted

to 100 K. E uati
in Debye temperatures around 600 K but diA

'
b

Equation (3) gives a difference in vibrational
entropy of AS„=+0.3 to +0.7k'/atom.

The third method was a measure of local vibrational
characteristics, specifically the mean-square relative dis-

t eir first nearest neighbors. The technique was extended
electron energy-loss fine structure (EXELFS) [17,18],
performed at temperatures from 100 to 300 K. Al K-
edge and Ni L -e~23 dge electron energy-loss spectra were
acquired with a Gatan 666 parallel-detection magnetic
prism spectrometer attached to a Philips EM 430 trans-
mission electron microscope. Channel-to-channel fluctua-
tions in the detector system were removed by direct nor-
malization with a uniform illumination spectrum, fol-
lowed by gain averaging over several spectra [19]. To re-
move the smoothly varying portion of the energy-loss
data, we used cubic polynomial spline fits with knots
separated approximately evenly in k space. The EX-
ELFS oscillations were normalized to theoretically calcu-
lated energy-differential cross sections [20], which were
scaled to match the measured edge jump heights. Figure
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FIG. l. Indefinite integral of Eq. (5) as a function of T
using a i erence of twodashed curve) and least-squares fit

' d'ff
Debye functions with HD =452 and 495 K (solid curve). The
error bar indicates thhe cumulative error in the integral at the
upper temperature limit of 343 K.
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FIG. 2IG. 2. Fourier band-pass filtering of A1 K-edge EXELFS
data from disordered Ni3Al. Data in the range 4.0 & k & 10.0

' were Fourier transformed. The band-pass filter for ex-
tracting EXELFS oscillations from the first-nearest-neighbor
shell is shown at the top.
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FIG, 3. MSRD data and fits to the Einstein model for Al
and Ni atoms in disordered and ordered Ni3A1.

2 presents typical radial distribution functions, uncorrect-
ed for phase shifts, from the Al K-edge EXELFS data
from disordered Ni3Al. The band-pass filter for extract-
ing the EXELFS oscillations from the first-nearest-
neighbor shell is shown at the top of the figure.

By comparing the filtered oscillations, changes in

MSRD were determined relative to the lowest-tempera-
ture datum. The MSRD data were fitted to predictions
of the Einstein model [21], allowing the lowest-temper-
ature MSRD to vary. Einstein temperatures obtained
were 312 K (+34 K,—25 K) for Al atoms in disordered
Ni3AI, 453 K (+31 K, —20 K) for Al atoms in ordered
Ni3Al, 279 K (+49 K, —31 K) for Ni atoms in disor-
dered Ni3A1, and 304 K (+6 K, —7 K) for Ni atoms in

ordered Ni3Al. The MSRD data and their Einstein tem-
perature fits are presented in Fig. 3. There is a strong
reduction in the vibrational amplitude of Al atoms in the
ordered material, and this change is measured reliably.
The reduction in vibrational amplitude of Ni atoms is
much smaller and is less reliable. By substituting the
Einstein temperatures for the Al atoms and Ni atoms into
Eq. (4), we obtain AS,, =+0.47(+0.27, —0.41)k~/atom.
The large errors originate from the relative inaccuracy of
the MSRD data for Ni atoms.

In summary, we have performed three independent ex-
periments on the vibrational entropy of disordered and
L12-ordered Ni3A1. All three show that the vibrational
entropy of the disordered state is greater than the ordered
state. Considering the characteristics and accuracies of
the techniques, we estimate that AS, , =+0.3(~0.1)ka/
atom. While this is less than the configurational entropy
of mixing (+0.56k'/atom), it is large enough to aAect

substantially the relative thermodynamic stabilities of the
disordered and ordered states of Ni3A1. From our
temperature-dependent EXELFS measurements, we find
that the Al atoms undergo larger changes in vibrational
amplitudes than do the Ni atoms.

This work was supported by the U.S. Department of
Energy under Contract No. DE-F603-86ER45270.

[I] F. Ducastelle, Order and Phase Stability in Alloys
(North-Holland, Amsterdam, 1991).

[2] J. M. Sanchez, J. P. Stark, and V. L. Moruzzi, Phys. Rev.
B 44, 5411 (1991).

[3] R. A. Oriani, Acta Metall. 4, 15 (1956).
[4] J. F. Freedman and A. S. Nowick, Acta Metall. 6, 176

(1958).
[5] D. B. Bowen, Acta Metall. 2, 573 (1954).
[6] S. V. RadcliAe, B. L. Averbach, and M. Cohen, Acta

Metall. 9, 169 (1961).
[7] H. J. Leamy, Acta Metall. 15, 1839 (1976); H. J. Leamy,

E. D. Gibson, and F. X. Kayser, ibid 15, 182. 7 (1976).
[8] C. Booth and J. S. Rowlinson, Trans. Faraday Soc. 51,

463 (1955).
[9] P. J. Wojtowciz and J. G. Kirkwood, J. Chem. Phys. 33,

1299 (1960).
[10] H. Bakker, Philos. Mag. A 45, 213 (1982).
[1 1] J. A. D. Matthew, R. E. Jones, and V. M. Dwyer, J. Phys.

F 13, 581 (1983).
[12] H. Bakker and C. Tuijn, J. Phys. C 19, 5585 (1986).
[13] C. Tuijn and H. Bakker, Phys. Status Solidi (b) 155, 107

(1989).
[14] Furthermore, Eq. (1) predicts that by including vibration-

al entropy, the transformation changes from second order
to first order.

[15] S. R. Harris, D. H. Pearson, C. M. Garland, and B. Fultz,
J. Mater. Res. 6, 2019 (1991).

[16] R. W. Cahn, P. A. Siemers, J. E. Geiger, and P. Bardhan,
Acta Metall. 35, 2737 (1987).

[17] R. D. Leapman, L. A. Grunes, and P. L. Fejes, Phys. Rev.
B 26, 614 (1982).

[18] J. K. Okamoto, D. H. Pearson, C. C. Ahn, and B. Fultz,
in Transmission Electron Energy Loss Spectrometry in
Materials Science, edited by M. M. Disko, C. C. Ahn,
and B. Fultz (The Minerals, Metals &, Materials Society,
Warrendale, PA, 1992), p. 183.

[19] H. Shuman and P. Kruit, Rev. Sci. Instrum. 56, 231
(1985).

[20] R. D. Leapman, P. Rez, and D. F. Mayers, J. Chem.
Phys. 72, 1232 (1980).

[21] G. Beni and P. M. Platzman, Phys. Rev. B 14, 1514
(1976).

1130


