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We develop a large-N method for the problem of homogeneous turbulence. The spherical (N ~)
limit yields Kraichnan s direct interaction approximation equations. Implications for real turbulence
(N = I ) are discussed. In particular, we argue that the renormalization-group results obtained by setting
the expansion parameter y =4 are incorrect, and that the Kolmogorov exponent g has a nontrivial depen-
dence on N, with t;(N ~) = —', . This value is remarkably close to the experimental result g= —', , which
must therefore result from higher-order corrections in powers of I/N.

PACS numbers: 47.27.6s, 64.60.Ht

Possibly the single most outstanding problem in the
theory of homogeneous turbulence in fluids is a detailed
understanding of the turbulent energy cascade, commonly
known as the Kolmogorov cascade. Thus if we consider a
fluid that is stirred at some very large length scale, mo ',
while dissipation due to viscous processes occurs only on
very small length scales A '«mo ', then in the inertial
range mo«k «A we expect power-law behavior for the
energy spectrum, E (k) = Ck ~, with a characteristic
universal exponent (the Kolmogorov exponent) g. Experi-
mentally it is found that (= —', [1], in amazing agreement
with the original Kolmogorov argument [2]. Many sub-
sequent treatments, based to varying degrees on the actu-
al fluid equations [3,4], have obtained the —', law as well.
To date, however, there is no theoretical evidence that
this law is exact. The danger with existing derivations is
that, very much like the equivalence of all mean-field
theories in critical phenomena, they may simply be com-
plicated rephrasings of Kolmogorov s original dimension-
al analysis.

What makes turbulence such a difticult problem is,
first, its nonequilibrium nature, and, second, the lack of a
small expansion parameter. The most successful method
in critical phenomena, the epsilon expansion around di-
mension d =4, does have an analog in turbulence theory,
but is completely uncontrolled (see below).

We turn, therefore, to the second general method used
in critical phenomena, namely, the 1/N expansion. The
idea here is to generalize the model under consideration
to one with a higher symmetry, indexed by the integer N,
and consider the limit where N is large. In standard ap-
plications to critical phenomena [5], N is the dimension
of the rotation group, O(N), and physical values are
N=1, 2, 3; the limit N ~ yields the exactly soluble
spherical model, and a systematic expansion in powers of
1/N may be developed [5]. The main advantage of the
approach is that the dimensionality d becomes a free vari-
able.

To develop an analogous approach in the theory of tur-
bulence, we consider the following generalization of the
Navier-Stokes equations for an incompressible, stochasti-
cally driven fluid (sums over repeated indices are under-
stood):

t)v
+XoAgP"(v~ V)v = —Vp'+ voV v'+ f', (la)

V v'=0, a=1, . . . , N, (lb)

where v'(x, t) are velocity fields; p'(x, t) are pressures,
determined by (lb); vp is the viscosity; and f'(x, t) are
independent random stirring forces, taken to be Gaussian
with zero mean and Fourier-transformed variance

v =D~p(u )vp, u 6 Gtv, (3)

where the N xN matrices D (u) form an irreducible uni-
tary representation of the group G~. This requires that
the rank-3 tensor A„obey

ggr =Dtv, , („)D,(u )D, („)gj&'r'

i.e. , that it be invariant under the group G~. Amit and
Roginsky [6] have considered ¹omponent generaliza-
tions of the Potts model, which also requires a cubic in-
variant. They chose the group Gtv =O(3) for all N, but
allowed the dimension of the representation to diverge
with N [7]: N =2l+1, where the total angular momen-
tum index l is taken to be even (see below). Thus the
matrices D are the famous d matrices from quantum
mechanics [8]. The cubic invariants Atvt'" are then the
Wigner 3j symbols [9]

f(l) 'A ' ' '=—( —1)
l l l

—mt m2 m3

(lm 1 ~
lm 2lm 3)

42l+ 1

(5)

with the familiar Clebsch-Gordan coe%cients on the
right-hand side; f(l ) is a normalization to be chosen
below. In applying this choice to the turbulence problem
it is most convenient to use a complex notation for the ve-

(f; (k, to)fg (k', to')) = D(k, co) z;I(k)

x B(k+k') 8(co+ co') 6,p,

where z;i(k) =8;1—k;ki/k is the usual transverse pro-
jection operator. In order to impose a higher symmetry
on these equations, we assume them to be invariant under
some group of transformations
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locities, with the constraints that v '=( —1)'v', f
=( —1)'r * [10].

We note that any set of equations of the form (1)
possesses a generalization of Galilean invariance. Let
AIv =g,Ag/'~, and let g~ be any left eigenvector of A~,
with corresponding eigenvalue p: Agg~ =pgz. Then the
equation of motion for the averaged velocity, v =(I/N)
&&+,v„ is invariant under the transformation

v' (x, r)=v (x+Xpg vp r, t) g vp, a=1, . . . , N,1

p
(6)

where vo is an arbitrary fixed velocity. Since there are N

eigenvectors g~, this yields N distinct Galilean-type sym-
metries [11].

We now turn to the N ~ limit, relying heavily on
Amit and Roginsky s [6] investigations into the behavior
of the Ag z for large l. Since the topology of the dia-
grams in the perturbation theory expansion for their Potts
model is identical to ours, their elucidation of the surviv-
ing diagrams when N ~ can be transferred with little
change to our problem. The appropriate normalization in

(5) is found to be f(i) =421+ I =JN. There are two
important correlation functions: the velocity-velocity
correlation function U and the response function G
defined by

(i; (k, rp)vi~(k', rp')) =U(k, cp)z;J(k)8(k+k')8(co+ pi')S, p,

(f,"(k, ai) vi~(k', rp') ) =G (k, rp) D (k, ro) z;i (k) 6(k+ k') 6(co+ rp') S,p .

(7a)

(7b)

The average is over the ensemble of forcing functions f' [12]. The energy spectrum is given by E(k) =k ' f(dco/
2x)U(k, cp). The basic result is that when N ~, only graphs with the maximum number of bubbles at each order sur-
vive [10,13], each with unit coefficient. These diagrams may be resummed exactly, and we obtain two nonlinear coupled
integral equations for G and U:

I/G(k, rp) = iso+ vpk +Xpk J b(k, q)U(k —q, cp —Q)G(q, fl),
q

(8a)

G(k, ro) = A ~k 'g(ro/vk'),

U(k, rp) = A2k u(cp/vk'), k, rp —0,
(9a)

where the exponents h, ,z and the scaling functions g, u are
universal, while 2 ~, A2, and v are nonuniversal scale fac-
tors. The energy exponent is given generally by g=h
—z —d+ 1. The renormalization-group formalism allows
one to calculate z, 6 to all orders in y [4], with the result

U(k, cp) = ~G(k, zo)
~

D(k, co)+Xpk
&

a(k, q)U(k

where b(k, q) =PiI(k)z~ (k —q)PI;(q)/(d —1)k, a(k,
q) = —,

' [b(k, q)+b(k, k —q)], and P~l(k) =z;i(k)kl
+z;i(k)ki. We use the convenient notation J~—=fd"q/
(2x), etc. These equations are very well known in the
theory of turbulence: They are Kraichnan's direct in-
teraction approximation (DIA) equations [14], originally
derived as the lowest in a hierarchical closure scheme
[15].

We now turn to a discussion of the properties of (8)
and their implications for the energy cascade. We first
contrast (8) with the renormalization-group approach [4]
in which one considers driving spectra of the form
D(k, co)—:D(k) —k, k 0 (y =2 —d correspond-
ing to thermal equilibrium). For y & 0 it is found [4]
that the nonlinearity Xo scales to zero at long wave-
lengths, and the functions (7) take forms characteristic
of linear hydrodynamics: G(k, ro) = ( —iro+vRk )
U(k, co) =D(k)/(ro + vpk ), k 0, where v~ is the re-
normalized, large length-scale (eddy) viscosity. For
y & 0 the nonlinearity remains finite on large length
scales, the functions G and U are strongly renormalized,
and nontrivial scaling laws develop [4]

—q, ~o —n)U(q, n) (8b)

that z =2 —y/3, A=d+y/3, and hence $=2y/3 —l.
Now, real turbulence corresponds to D(k) 0 outside
some narrow range k &mp, i.e., in effect y ~ (we call
this "short-ranged driving"). However, it was observed
[4(b)] that when y =4 one has (= 3 . This, together with
the fact that y =4 corresponds to a natural boundary in
the renormalization-group formalism (beyond which an
infinite family of new relevant operators appears) [4(b)]
led to the speculation that for y & 4 the exponent values
should stick at their y =4 values. Precisely this behavior
occurs in standard critical phenomena where the mean-
field fixed point takes over for d & 4. Although there is
no direct evidence for this idea, much subsequent work
has been based on its assumed validity [16].

We shall now show that the 1/N expansion yields a
rather different scenario. To motivate it we consider
an analogy to magnets with power-law interactions
[17]. Consider an Ising model with Hamiltonian H
= —+&i J~ssi, with J~.—~R; —Ri~ ", cr & 0, and
assume d & 4. For a & d/2, the critical behavior is
mean-field-like. For a & d/2, nontrivial critical behavior
results, and there exists a renormalization-group epsilon
expansion in powers of e =2o —d [18]. Furthermore,
the critical correlation decay exponent g is given exactly
to all order's in t' by g =2 —a. This should be compared
with the results above for g(y). For what values of cr are
the results for short-ranged interactions recovered? The
naive answer is for a & 2, for then J;~ possesses a second
moment, and its Fourier transform is J(k) =Jp(1
+a~k +a k + ), i.e. , the singular k term is now
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subdominant to the usual k short-ranged term. In fact
this is incorrect; rather, one finds that short-ranged be-
havior results when o.) 2 —

gp, where gp is the short-
ranged value of g [18]. However, qp(d) is an entirely
nontrivial function which cannot be inferred at any order
in the ep expansion, but must be calculated directly from
the short-ranged Ising model. In critical phenomena this
calculation can be done via the usual t..=4 —d expansion.
However, short-ranged turbulence has no upper critical
dimension, and therefore there exists no independent cal-
culational scheme for determining where the crossover
from long-ranged to short-ranged driving occurs.

We now see the beauty of the large-N method. In

equations (8) the driving function D(k, to) is completely
arbitrary and the detailed crossover between short- and
long-ranged D(k) can be elucidated. Although we pay
the price of having N ~, we shall see that some very
general statements can be made.

We first note that (8) reproduces the y-expansion re-
sults precisely. If the scaling forms (9) are substituted in

(8) one finds that so long as d (A( d+z all integrals
converge in the scaling limit vp 0. The scaling relation
h, +z =d+2 results as a consistency condition. A second
relation results when one assumes that D(k) dominates
the scaling, and hence that k ~ scales in the same
way as the nonlinear term in (8b). This yields 2d —z
=2d —2+y, and leads directly to the exponent values
quoted below (9). This is perhaps not surprising since
Galilean invariance plays a key role in determining these
values, and we have seen that the N ~ limit possesses
a generalized Galilean invariance. What is perhaps more

6p =„b(k,p)u . ik —
pi u(s)

ik —
p( I —s'/4

~s~ ( 2, & =d + (y —I )/2,

where 6p=DpkpQpmp v is the properly scaled driving
amplitude, and 0(x) is the step function. This equation
has a solution so long as h, does not permit a solution with
6'p =0. Although we do not have a complete proof, based
on existing numerics [21] and arguments based on con-
formal transformations [22] we believe that when y =4,
i.e. , A=d+ 2, and g= 2, such a solution exists. Thus
for y ) 4 the driving no longer controls the scaling;
effectively one has Bp=0, and ( sticks at the value

The solution to (11) with Sp=0 then describes true tur-
bulence [note that one obvious such solution is 6 =1, and
u (s) = (1 —s /4) 't, but this violates the condition
6 & d+z upon which the derivation of (11) was based].
We are presently pursuing numerical solutions to (11) to
verify the y =4 borderline, and to solve for the function
u(s) —there appears to be no simple analytic form. Note
that z =1 and g= —,

' were precisely the values found orig-
inally by Kraichnan [14,23], who also arrived at a result
equivalent to (10). However, his approximate solution
for u was u (s) = (1 —s /4) 't, which does not satisfy

g(s) =is/2 —(1 —s'/4) ' '. (10)

The amplitudes satisfy 2 ] v = 1, and 8 ~ 2 2kpupmp+ '

=1, where up=[(d —l)mp '/dh2vt fq U(k, cp) is a
cutoff-dependent measure of the total kinetic energy den-
sity, and remains finite as mp 0. Note that for ~s ~

& 2,

g is purely imaginary, while for ~s~ (2, ~g~ =1. The only
condition on u(s) at this stage is that it vanish for
~s~ ) 2; the exponent d, is yet to be determined. An equa-
tion for u(s) results by examining the Pnite parts of the
integrals as mp 0. These may be combined [10] into a
single integral equation for u(s) and A, with the driving
spectrum still appearing as an inhomogeneous term.
Once again, assuming that the driving term determines
the scaling, we find 5 =d+ (y —1)/2, and the equation
for u (s) reads

i/z

0(1 —t'/4) —p' 'u(t)

(11). Equation (11) appears to be a new result.
What is the connection between our analysis and those

that find the Kolmogorov results (= —', and z = —,
' for

y & 4? The answer is that if the divegent parts of (8) are
simply dropped, the renormalization-group results extend
to y =4, at which point similar numerical and conformal
arguments indicate that a Bp=0 solution exists for a sub-
tracted version of Eqs. (8), in which now both u(s) and

g(s) are nontrivial (we emphasize that the g= —', result,
though widely accepted, has never been proven for the
subtracted DIA, and therefore has precisely the same
status as g= —', for the unsubtracted DIA [22]. However,
since the unsubtracted Eqs. (8) are fundamental, this
procedure is seen to be arbitrary and inappropriate.

What general conclusions can we make? First, the
breakdown of the renormalization-group results at z =1
is almost certainly exact, and the value z =1 thereafter is

probably general. This confirms the "random Taylor hy-

pothesis, " namely, that sweeping of small scales by large
ones should make the spatial and temporal spectra very

surprising is that one may perform the renormalization-
group y expansion directly on Eqs. (8), and the result is

precisely the O(y) recursion relations from Ref. [4].
Thus Eqs. (8) are an exact integration of these lowest-
order recursion relations [19].

However, Eqs. (8) also show where the renor-
malization-group approach breaks down. Specifically, at

y = 3 one has z =1, h, =d+ 1, and the convergence condi-
tion A(d+z fails [20]: The integrals in (8) diverge at
small q. To proceed further one must put a small-k
cutoff mp into D(k), and look for scaling when k»mp.
One first isolates the divergent parts of (8) as mp 0.
Amazingly enough this determines the scaling of 6 exact-
ly: One finds z =1 and the equation 1/g(s) = —is+g(s),
i.e. ,
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similar. The exponents 6, g are still nontrivial, and
presumably vary with N. If indeed ((N ~) = —', this is

remarkably close to the experimental result
differing by only 10%. Large N expansions in critical
phenomena seldom do this well. Calculating the next
correction in powers of I/N is a daunting task [7,13], but
seems to be a necessary step in order to confirm these
ideas.

We end by emphasizing the philosophy of our ap-
proach. The idea we propose is that the DIA Eqs. (8)
represent an exact solution in a special limit, which is
continuously related, ~ia N, to the real turbulence prob-
lem Th. ese equations should thus be taken at face value
Previous work [20] which has concentrated on modifying
them to obtain the 3 law thus appears to miss the mark.
We view the 2 law not as a problem to be fixed, but
rather as an amazingly accurate zeroth-order approxima-
tion in a systematic expansion for g(N). The closeness of
the experimental value to the Kolmogorov —', is a perhaps
unfortunate coincidence which has led people away from
taking the DIA equations as seriously as they deserve to
be taken.
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