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What is the Dimension from Scaling of Finite Systems?
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Finite-size scaling allows the extraction of a dimension from scaling d, , as well as critical exponents
for systems with a second-order phase transition. The calculation of d, allows comparisons to be
made with other expansions in dimension, in which d, plays the role of the physical dimension.
This is demonstrated by a numerical transfer-matrix study of the pure ferromagnetic Ising model
in two and three dimensions, as well as for quenched random bonds in the two-dimensional Ising
ferro magnet.
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Numerical studies of critical phenomena must be per-
formed using Monte Carlo methods on finite lattices [1],
or on systems which are inBnite in one dimension by the
numerical transfer-matrix method [2]. However, in both
cases the systems which can be studied do not have any
critical behavior, since phase transitions in short-ranged
models can occur only in the limit where at least two di-
mensions are taken to infinity. Nevertheless, the infinite-
lattice behavior of phase transitions can be obtained by
studying the finite-size scaling (FSS) behavior of systems
amenable to computer simulations [3—5].

Another useful methodology in the study of phase tran-
sitions are expansions in dixnension. For the short-ranged
Ising model there are Wilson-Fisher expansions about the
upper critical dimension (expansions in d=4 —e) [6, 7] as
well as asymptotic expansions about the lower critical
dimension (expansions in d=l+e) [8—12].

It has been the accepted belief that FSS of model sys-
tems could only be compared with expansions in dimen-
sion at the physical dimension. The only exception to
this was the study of fractal lattices [13] (where it has
been shown that the fractal dimension is the physical di-
mension only in the limit in which the fractal becomes
translationally invariant [14]) and in a recent interpo-
lation procedure [15]. In this Letter we show that the
calculation of a dimension from scaling d, for Finite sys-
tems enables one to make contact with dimensional ex-
pansions. In particular, we postulate that with the use
of nonperiodic boundary conditions it is possible to vary
d„and that d, plays the role of the physical dimension
d of the system. Although in the limit of large systems
d, —+ d, it is possible to use d, to obtain results for crit-
ical exponents near the physical dimension d. We will
demonstrate this approach through a numerical transfer
matrix study of the ferromagnetic Ising model on square
and simple-cubic lattices. However, for reasons sketched
below it is anticipated that similar application of FSS to
compare with dimensional expansions should be valid for

other models.
The Ising model studied consists of spins 8=+1 located

at the sites of a hypercubic lattice. The isotropic fer-
romagnetic nearest-neighbor coupling constant is J and

the magnetic field is H. The partition function for a lat-
tice with X spins in each d —1 dimensional layer and
M layers is given in the normal fashion by [2, 16, 17]
Z = Tr((DH ~D i A)M). Periodic boundary conditions
have been imposed in the transfer direction. The 2 x 2
matrix A is a direct (Kronecker) product of N identical
2x2 matrices with elements (s, ]a~ss) = exp(Js, ss/k~T),
where k~ is Boltzmann's constant and T is the temper-
ature. The matrix A contains interactions between spins
in adjoining layers. The other two 2 x 2 matrices can
be chosen to be diagonal. The matrix DH contains inter-
actions of the spins with a magnetic field, and is the di-
rect product of N 2x 2 diagonal matrices 6 with elements
(s, h]s, ) = exp(Hs, /ktsT). The matrix ~D i contains all
interactions between the spins within a given d —1 dimen-
sional layer. The elements of this matrix depend on the
dimension of the lattice within the layer as well as the
boundary conditions imposed in this layer. We will use
boundary conditions in which the bonds at the boundary
have strength gJ. Hence g=l yields periodic boundary
conditions, g=0 free boundary conditions, and g= —1 an-
tiperiodic boundary conditions. For d = 2 the lattice is
I xM with N = L and there is only one 'oond per layer
with a strength g J. For d = 3 the lattice is Lx Lx M so
N=I2 and each layer has 2L bonds with strength gJ.

In the limit M —+ oo the longitudinal correlation length
is given by ( = 1/ ln ~A0/Ai ~, where Ao (Ai) is the largest
(next-largest) eigenvalue of the transfer matrix. Near the
critical temperature T„ the correlation length diverges as

( = t with reduced temperature t = (T —T,)/T,
~

and
yT = 1/v. The FSS expression for ( is given by [2—4]

((T H N) = N'~t" ''ia(tNv ~t' '-& HNv"~t" -'~i)

(1)
This would be traditional FSS if one set d, = d, where d
is the dimension of the underlying lattice. However, we
will determine d, by FSS. In order to do this, define

B,s (T) = ln ((T, N, ) /((T, Ns ) /ln (N, /Nz ).
If T, were known exactly, A,s(T, ) could be viewed as a
finite-size estimate for 1/(d, —1). By using three lattice
sizes and locating the Finite temperature minimum of
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FIG. 1. The dimension from scaling d, as a function of
the strength of the bonds on the boundary. For the d = 2
Ising ferromagnet three Lxoo lattices of size L, L + 1, and
L+ 2 were used with L = 4 (+) and 10 (x). For the d = 3
Ising ferromagnet LxLxoo lattices were used with the three
sizes L, L+ 1, and L+ 2 with L = 2 (C') and 3 ( ).
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yT + 1 0((T, N, )/BT
d, —1 8((T, N~)/OT

ln(N, /N, ). (4)

Dividing Eq. (4) by 1/(d, —1) gives an estimate for yT.
In Fig. 2 the critical exponent yT- obtained from Eq.

(4) is plotted for the square lattice [Fig. 2(a)] and the
simple-cubic lattice [Fig. 2(b)] as a function of d, . Also
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it is possible to obtain finite-size estimates for both T,
and 1/(d, —1). This possibility was mentioned in Ref. [18],
but has not been further investigated.

In Fig. 1 d, obtained from FSS of numerical transfer
matrix data is shown for the d = 2 and d = 3 Ising
ferromagnetic as a function of the boundary strength g.
Since the bulk critical exponents do not depend on g,
as K increases d, approaches d for a wider range of g
values. However, we see that for moderate L in d = 2
the range of d, is rather large for moderate values of g.
In d = 3 the exact diagonalization must be performed
on matrices of size 2+ which at present allows only four
attainable lattice sizes with L & 5. (For I = 5 this
required the calculation of the two largest eigenvalues of
a nonsparse real symmetric matrix with vectors of size
3.4 x 107. This was done through a program written
in FORTRAN/PARIS on a Thinking Machines Corporation
CM-2 with 2 one-bit processors and 2 Gbytes of main
computer memory. ) Figure 1 shows that for the simple-
cubic lattice the accessible range of lattice sizes gives d,
values which extend over a wide range.

The critical exponents can now be obtained in the
usual fashion [2]. DifFerentiating Eq. (1) with respect to
T and evaluating it at H = 0 and the Rnite-size estimate
for T, gives

0.5 —
(3.
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FIG. 2. The critical exponent yT is plotted as a function

of the dimension from scaling, d„ for the (a) d = 2 and (b) d =
3 Ising ferromagnet. The symbols for the finite-size scaling
study are the same as in Fig. 1. Also shown are results of the
asymptotic expansion for the near-planar interface model in
d = 1 + e (dotted lines) [8, 9] and resummed expansions in
d = 4 —e (Q with error bars) [7].

plotted in Fig. 2 are the highest three orders of asymp-
totic expansions for yT in d = 1+ e [8, 9] and resurnmed
expansions in d = 4 —e [7]. These graphs show that the
association of d, with d is warranted near the physical
dimension. Figure 2 also illustrates what constitutes the
definition of "near" in these models. The error estimates
shown in Fig. 2(b) for L = 3, were obtained by using
each pair of lattices in Eq. (4). It is also seen that it is
easier to extend d, downward in dimension by making g
large (see Fig. 1) than upward in dimension. This is a
consequence of the fact that to try to extend d, upward
in dimension means that one needs to pass through free
boundary conditions (g = 0), and for d = 2 this involves
introducing an interface into the model [19]. The scaling
for the square-lattice model has been shown to be difFer-
ent for values g & 0 [20, 21]. In fact, Fig. 1 shows that
for g & 0 d, starts to decrease again, leading to the loop
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seen in Fig. 2(a).
The magnetic exponent yH can be found in a similar

fashion by differentiating Eq. (1) twice with respect to
H (Fig. 3). Figure 3 demonstrates that for d, near d
the FSS results agree with the results from expansions
in dimension. This means that whenever d, is "near" d
both yz- and y~ agree with the expansions in dimension.

Do the critical exponents change with the addition of
quenched random defects? Harris [22] predicted that the
answer is yes only if the critical exponent (n) of the spe-
cific heat of the pure model is greater than zero. For
the d = 2 Ising model o, = 0, so this is a marginal
situation [23]. However, using the hyperscaling relation
dv = 2 —n (or through more general arguments [24]) it
is shown that the critical exponents should change with
the addition of disorder whenever the pure model has
yT & d/2. Thus disorder should change the critical ex-
ponents for the Ising model for d ) 2 but not for d & 2.
The use of d, allows one to check this prediction. Be-

cause of the diKculty with obtaining reasonable values
for ( from three lattice sizes, the Ising model on a square
lattice with quenched random ferromagnetic bonds with
strengths Jq and Jq was studied. This model is self-dual
when the two bond strengths occur with equal proba-
bility [25]. Consequently, only two lattice sizes at the
infinite-lattice value for T, are required to obtain d, from
Eq. (2). The lattices used were L x M with M = 107, and
were analyzed to obtain yT from Eq. (4). The values of
L used were between 2 and 10. Periodic boundary con-
ditions (which give d, ( d) and antiperiodic boundary
conditions (which give d, & d) were used. As seen from
Fig. 4 the critical exponents change with the addition of
disorder to values with yT ( d/2 as predicted [24] for
d, ) 2, while the critical exponents remain unchanged to
within error estimates for I ) 2 for d, ( 2. Note that
the value for the J1,J2 model with the largest value of d,
used L = 2, and consequently this point should not be
expected to fit smoothly on d = 4 —e expansions for the
Ising model with quenched disorder [26].

A natural question is why d, behaves like d. The FSS
expressions in Eq. (1) can be derived by renorrnalization
group (RG) arguments with 1/L as an additional rele-
vant scaling field [2]. In the infinite-dimensional space of
interaction parameters for real-space RG rescaling there
are separate fixed points associated with the physical di-
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FIG. 3. The magnetic critical exponent yH is shown as a
function of the dimension from scaling d, (a) for the d = 2
Ising ferromagnet and (b) for the d = 3 Ising ferromagnet.
The symbols are the same as in Fig. 2. The dotted line is the
result for the droplet model in d = 1+ e dimensions [10].

d.
FIG. 4. The critical exponent yT is shown as a function

of the dimension from scaling d, near d=2. Resummed ex-
pansions in d=4 —e are shown (Q with error bars) [7]. Re-
sults for the pure d = 2 Ising ferromagnet are shown (0)
using periodic boundary conditions (d, ( 2) and antiperi-
odic boundary conditions (d, & 2). Results for the d=2 Ising
ferromagnet with quenched random ferromagnetic bonds of
strength J~ and J2 chosen with equal probabilities are shown
for periodic (+) and antiperiodic (x) boundary conditions for
various I values. Also shown are boundary conditions with
bond strengths g J (g&1) using L values 4 and 5 ( ). The
dashed line is the Harris criterion [22, 24] yT = d/2. This
demonstrates that with quenched disorder the critical expo-
nents change for d&2, in agreement with the Harris criterion.
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mensions 2 and 3. However, these fixed points are on
a line segment of fixed points for general d between the
upper and lower critical dimension. Consequently, when-
ever one is near the linear regime of the fixed point for
the d-dimensional model, one should also be near the
linear regime for the model in 0+K dimensions for small
z. Since both d, and the critical exponents are estimated
from the same region in this space of couplings, d, should
be associated with the critical exponents obtained from
the FSS.

An alternative explanation for the results in nonin-
teger dimensions near the physical dimension may be
to view the FSS as that of a system during a dimen-
sional crossover (from d-dimensional behavior to one-
dimensional behavior). Recently O' Connor and Stephens
[27) have shown that the RG that interpolates between
different dimensions has effective exponents appropriate
for the system in noninteger dimensions. Which, if ei-
ther, of these explanations is correct and how applicable
this method is to other models remains for future inves-
tigations.

We have postulated that FSS scaling for systems with
second-order phase transitions should allow one to ob-
tain results for universal quantities for dimensions near
the physical dimension. This allows direct comparisons
between computer studies of critical phenomena and of
expansions in dimension. We have shown that this is the
case for the ferromagnetic nearest-neighbor Ising model
on square and simple-cubic lattices, where results for
both yT and yH agree with expansions in d = 4 —e [7]
and d = 1+e [8—10]. This method can also be applied to
systems with quenched random disorder.
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