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Description of Chaos-Order Transition with Random Matrices within
the Maximum Entropy Principle
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The deformed Gaussian orthogonal ensemble introduced earlier is developed here for large dimension-
al matrices. Both the spacing and eigenvector distributions are studied and compared to other ones sug-
gested for the chaos-order transition problem. The concept of a universal lower entropy with respect to
the Gaussian orthogonal ensemble entropy is proved very useful.

PACS numbers: 05.45.+b

S= —
&

dH P(H)lnP(H) . (1)
We now maximize 5 subject to the usual constraints of
the GOE,

(TrH ):—„ldH P(H)TrH =p,
(1)=1,

(2)

(3)

It is expected that for systems whose classical motion is
neither regular nor fully chaotic, the statistical behavior
is intermediate between the Poisson and the Gaussian or-
thogonal ensemble (GOE) limits [1—16]. Several authors
have suggested empirical functional forms for the level

spacing distributions. We cite here the Brody distribu-
tion [11],the Berry-Robnik distribution [5], and the Rob-
nik distribution [6]. What one is usually seeking are in-
termediate distributions that exhibit a degree of univer-
sality close to that of their Poisson and Wigner (GOE)
limits [17]. Further, the distribution of eigenvectors of a
system that is fully chaotic (GOE) is known to be of the
Porter-Thomas form [18]. It is therefore hoped that in

the intermediate case the spacing distribution alluded to
above dictates to some extent the form of the eigenvector
distribution. This way one would have a fully universal
description of systems intermediate between chaos and
order.

Several of the above questions have been discussed in

the past. In particular we cite the work of Alhassid and
co-workers [19-22], Lenz and Haake [7,8], and Guhr
and Weidenmuller [23]. Our aim in the present work is

to develop a general framework through which all of the
above questions can be addressed. We shall show that it
is possible to derive a joint distribution for the spacings
and eigenvectors valid in the intermediate regime. From
this distribution, the spacing distribution is obtained by
integrating out the eigenvectors and similarly for the
eigenvector distribution. The cases of 2 x 2 and 3 x 3 ma-
trices have already been worked out analytically [24,25].
Here we present a thorough numerical study for large di-
mensional matrices.

Our theory is based on the maximum entropy principle,
which we briefly outline in the following.

We define the entropy associated with the distribution
P(H) of the Hamiltonian ensemble H as

and obtain

PGoF(H) =exp[ —Xo —
1
—aoTrH ],

ao = jV(jV+ 1)/4p,

exp( —ko —1) =2 '(jr/2ao)

(4)

(5)

Denoting the eigenvalues by E~,E2, . . . , E~ and ampli-
tudes by C],C2, . . . , Cz, one can easily obtain the joint
distribution function

(H'j Hki) (~ik ~j I + ~jk ~j k )/4ao, (7)

with eo independent of the label. Further, the GOE en-
tropy can be straightforwardly derived from (1), (4), and
(5). We find for the entropy per degree of freedom
[there are jV (jV +1)/2 degrees of freedom for our sym-
metric real matrices]

SQQF I +ln + (JV+ 1 ) ln2
—

1

2 2QO
(8)

Thus simple universal features of the intermediate distri-
bution we are seeking are (1) a second moment that de-
pends on the label, and (2) an entropy per degree of free-
dom that is smaller than sGoq, Eq. (8).

Within the maximum entropy principle, an intermedi-
ate distribution can be defined through the addition of
more constraints. Here we use the simplest possible one
that allows eo to depend on the label. If we divide the

P(Ei, E2, . . . , Eiv', CI, C2, . . . , CN)

=P (E i, . . . , Erv )P (C i, . . . , Civ )

from which the spacing distribution P(s) and amplitude
(eigenvector) distribution P(c) can be derived. When
lV ~, we obtain the Wigner distribution for P(s) and
the Porter-Thomas distribution for P(e).

We should emphasize that the joint distribution func-
tion Eq. (6) implies no correlations between the E and C
distributions. This is a consequence of the GOE, namely,
P(H) is invariant under arbitrary rotation of the basis.

Before turning our attention to the intermediate case, it
is helpful to mention that constraint (2) gives rise to the
Gaussian distribution (4) with the second moment
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with P+Q=l, P =P, Q =Q, PQ=QP=O, then the
desired constraint reads

(Tr(PHQHP)) = v. (io)

We now maximize S subject to the GOE constraints (2)
and (3) and the new one (10), to obtain the intermediate
distribution. By fixing the value of (Tr(PHQHP)), with
a Lagrange multiplier P, we are deforming the GOE. Of
course the system still maintains full axial symmetry
about the P "direction. " The new ensemble, which we
called the deformed Gaussian orthogonal ensemble
(DGOE) in Ref. [24], is invariant under a transformation
that leaves vectors in P unchanged. Further understand-
ing of the ensemble can be gained by spelling out the
second moment,

(HJHi') —(8;I'6Ji+6g6Ji ) l

4a+2p 6k; —61;

clearly showing the label dependence mentioned above.
The DGOE distributions we obtain have the general

I'orm [24]

PoooE(H) = PooE(H)exp[ PTr(PHQ—HP)]

x [1+P/2 ] M(N —M)/2

JV(N+1) P M(N —M)
p 2v, v=

4a 2a ' 4a(1+P/2a)

(i2)

The information content I of the DGOE relative to the
GOE [26,27] is easily obtained,

M(N —M) PI=sGOE s DGOE N(N +1) 2a
ln 1+ (i 3)

Equation (13) clearly shows that a system described by
the DGOE is less chaotic, since the dift'erence SDQQE

$QQE + 0. Further, the degree of order in the DGOE is

I

1

PHP
~

PHQ
I

I

QHP i QHQ

random matrix H into four blocks and introduce the fol-
lowing notation (see Fig. 1),

H =PHP+ QHQ+ PHQ+ QHP,
(9)

measured by both M, the dimension of the symmetric
nondiagonal block matrix, and P. For very large matrices
(JV ~), the DGOE is not much difterent from the
GOE if M is taken to be small. For M comparable to N,
namely, N ~ M/N: n—& 1 finite, we obtain a satu-
ration limit for I,

I =n (1 —n ) 1 n (1 +P/2 a ) . (i 4)

H(A, ) =(PHoP+QHoP)+7 (PHoQ+QHoP),

—=Hp+X V,

(is)

A. taking the value from 0 (P =~), which is the regular
case, to 1 (P=O), which is the fully chaotic case [H(k
=1)=Ho]. Note that PHoP, QHoQ, PHoQ, and

QHGP are all random matrices.
Several authors have addressed the problem of chaos-

order transition using the decomposition (16) for H In.
particular we mention Guhr and Weidenmiiller [23], who

treat the problem of isospin mixing in compound nuclear
reactions. There is also the work of Lenz and Haake
[7,8] who consider a more general case of Ho and V

belonging to different ensembles (e.g. , Ho GOE; V:.
Gaussian unitary ensemble). Alhassid and Levine [19]
considered the same problem using Dyson's random walk
formulation and they obtained the s and c distributions
for the 2x2 matrix case. The way we formulate the
chaos-order transition, through the DGOE, Eq. (12), al-
lows a realistic large dimensional numerical study of both
the spacing and the eigenvector distributions. Before
proceeding we mention that for large matrix Hamiltoni-
ans Ho and V, the DGOE information content I is given

by [see Eq. (13)]

Our detailed numerical calculation described below cor-
roborates our discussion above, namely, that for a fixed
~alue of P/a, the amplitude and the spacing distributions
saturate with respect to the dimension of the matrix.
This is the universal feature we are seeking.

Before presenting the numerical results we mention
that in Ref. [24] we have worked out fully analytically
the cases of 2x2 and 3&3 matrices. The conclusion
reached by us as well as by Refs. [6] and [20] is that level

repulsion goes away when P is rigorously set equal to ~.
This, when generalized to larger matrices, indicates that
the P ~ limit must correspond to two decoupled
GOE's and P 0 to the case of two fully mixed GOE's
(and thus a single doubly larger GOE). In fact it can be
shown that our DGOE can be reformulated in such a way
that the quantity I/(1+P/2a) ':—k acts as a coupling
constant in a description involving the following Hamil-
tonian:

I—:sJJ —sH =2n(1 —n)ln(1/k) . (i7)

FIG. 1. The block structure of the Hamiltonian. See text for
details.

For k =0, I is infinitely positive. Equation (17) is an in-

teresting way to quantitatively measure how much more
information is contained in H(X) with respect to Ho

We have considered an ensemble of matrices of varying
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FIG. 4. The surprisal, &Iny/&y11, vs n/lV, where n represents
the label of the eigenvector coeScient (see text for details).
Dashed curve, N =100; full curve, N =400; and dotted curve,
N =800. The dash-dotted curve represents the Porter-Thomas
result.

the label of the eigenvector coe%cient ~Ek& =g„C„"~n).
We see a great amount of fluctuation that is smoothed
out when averaging over an ensemble of matrices (the
curve for N =400). We verified that the ensemble aver-
age is close to the n average. The larger dimensional
cases (/V =600 and 800) are seen to fluctuate a lot and
their average, needed to obtain v above, was found by the
simple n average mentioned above. We notice from the
figure a certain degree of saturation is attained for
N=600. The average for N=600 is close to that for
N =800.

We should mention that the amplitude distribution for
very large P shown in Fig. 3(c) which deviates appreci-
ably from the g distribution, Eq. (18), corresponds to a
situation of two almost completely decoupled GOE's
(PHP and QHQ), since X —0.0. For such a case we
verified that a better account of the data (histogram) is
obtained by using a sum of two g distributions, one,
aP, (y), for PHP and the other, bP„(y), for QHQ. The
surprisal procedure used by Alhassid and Levine can be
applied for this more general case to find a, b, v, and p.

In conclusion, we have presented a detailed numerical
study of the deformed Gaussian orthogonal ensemble [24]
for large matrices. Our guiding principle has been the di-
mension independence of the reduction in the entropy
with respect to that of the GOE. The general conclusion
drawn from our study is that it is possible to discuss both
the spacing distribution and the amplitude distribution
using the same ensemble appropriate for the intermediate
situation between chaos and order. Our theory should be
useful for the study of nuclear statistics and symmetry
breaking, as well as the general question of chaos-order
transition. We are presently applying our theory to the

isospin mixing problem considered in Ref. [23]. We end

by stating that the full Poisson limit (no level repulsion)
is attained within the DGOE by considering H to be
block diagonal with the block matrices having 2X2 di-
mensions.
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