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We propose a new method to estimate the quenched free energy in disordered systems. It uses gen-
eralized thermodynamic potentials, given by annealed averages of the partition function with appropriate
constraints realized by the aid of Lagrange multipliers. The method is applied to Ising models with ran-
dom magnetic fields. In that particular case, the constraints correspond to averaging only over the disor-
der configurations where the sum of the random variables has the correct mean value and variance.
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—(1/P )NlnZ~ =fjy,

where Z~ =2 (e ) is given by a thermal average
over the hot variables. In the thermodynamic limit, all
the disorder realizations of [J;J] (a part a set of zero
probability measure) have the same free energy

lim —(1/PN) lnZJv([J; ~j) = lim fv =f.
Q~ oo Q~ oo

(2)

This property is called self-averaging [1] since (1nZ)/N
becomes a nonrandom quantity for N ~. The calcula-
tion of the free energy in disordered systems is a difficult
problem even in simple one-dimensional models. In prac-
tice, it is much easier to approximate the quenched aver-
age lnZ by the annealed one ln(Z). From a physical
point of view, this corresponds to allowing the cold vari-
ables to arrange themselves to minimize the free energy.

Disordered systems are characterized by two types of
variables: the hot variables which arrange themselves to
minimize the free energy and the cold variables which
have much longer evolution times. A classical example is
a spin glass with Hamiltonian HN =g; JJ; jcr;a~ where
the N spin variables o.=+ 1 are of the first type and the
random couplings J are of the second type. From the
mathematical point of view this fact corresponds to two
diAerent kinds of averages. The typical free energy is
thus given by the quenched average over the disorder cold
variables

As a consequence, the main contribution to the annealed
free energy comes from a set of disorder realizations with
zero probability measure in the limit N ~. On a com-
putational level, the annealed approximation gives a
lower bound of f which is in most cases unsatisfactory.

The most celebrated method for the calculation of f is
the replica trick [1], which permits one to find it by the
continuation at n=0 of the annealed averages of the mo-
ments Z" (for positive integer n), when there is no replica
symmetry breaking.

This Letter proposes a quite diAerent approach. We
obtain an estimate of the quenched free energy in terms
of annealed averages of Z where the relevant constraints
are imposed by means of Lagrange multipliers. We thus
get a generalized thermodynamic potential which is a
function of the Lagrange multipliers, playing the role of
the chemical potential in ordinary statistical mechanics.
The advantage is that the set of disorder realizations
which contributes to these potentials is much closer to the
correct one. As a particular case, our method reproduces
the very accurate results of the microcanonical method
[2] for the Lyapunov exponent of product random ma-
trices which are binomially distributed. However, it can
be easily applied to continuous distributions and to prob-
lems which cannot be formulated in terms of transfer ma-
trices as, e.g. , mean-field theories.

Let us denote the free energy per spin at fixed coupling
realization [J;J] of an N spin system by
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y = —(1/N p ) 1n ZN ( jJ; J] ) . (3) pfz =min [S(y,a)+ py] =S(y*,a*)+py*,
y, a

(i 0)

In general, y is a random quantity which depends on the
configuration [J;J]. In terms of the probability PN(y)dy
that the free energy density falls in the interval [y,y
+dy], one thus has

lnZN = PN —dy PN (y)y, (4)

where the integral is over all possible values of y. For
N ~, the probability of finding y~f should vanish, be-
cause of the self-averaging. Therefore for large N, PN(y)
is peaked around the most probable value f, and one has

P ( ) S(y)N— (s)

ZN = dy PN(y)e ~y — dy e
aJ

In the large-N limit this integral can be estimated by the
saddle-point method so that

Pf~ =min [S(y)+Py] =S(y*)+Py*. (9)

In general, y* differs from the most probable value f and
therefore f~Wf. On the other hand, we can consider the
integral over the joint probability measure P(y, a)dyda,
so that one has

where S(y) & 0 for y&f, and S(f) =0, so that a saddle-
point estimate of the integral gives the expected result
[3]. In disordered systems, beyond y one can consider
other intensive thermodynamic quantities defined in

terms of the microscopic quenched variables. The sim-
plest examples are N 'g;

~J; J or N 'g;h; in Ising
models with nearest-neighbor random couplings or with
random magnetic fields.

Let us indicate by a one of these quantities, supposed
to be self-averaging to a. In the previous cases, if J; ~

and h; are independent identically distributed random
variables, a self-averages to J or to h because of the
large number law. It follows that the joint probability
PN(y, a) —exp[ —$(y, a)N] has a maximum at y =f,
a =a which means that S(y, a) & 0 for (y, a)~(f, a), and

S(f,a) =0. Furthermore, since P(y) =fP(y, a)da one
has from the saddle-point method

S(y) =min [S(y,a)] =$(y, a(y)) .
a

This equality obviously implies that a(f) =a. The intro-
duction of the new variable a has no effect in the integral
f=fdy daP(y, a)y for the quenched free energy but is
useful for later discussion because it shows that only the
disorder realizations which correspond to a =a contribute
to f in the thermodynamic limit.

The case of the annealed free energy

f~ =—lim —(1/Np) ln(ZN)Q~ oo

is rather different. Taking into account only P(y), one
has

where a* =a(y*). The above expression is the same as
(9) but explicitly shows that the minimum condition is

realized for a free energy y =y* and for a=a*. These
two quantities both differ from the quenched averages f
and a. In other words, the main contributions to f~ come
from disorder realizations which are different from those
contributing to f At. this point, it would be clearly useful
to minimize expression (10) imposing a =a. This is

indeed possible by means of a Lagrange multiplier p. In
the following we take a =0, to simplify the notation. In
order to average over the disorder configurations with
a =a =0, we start by computing

g(p, p) =min [S(y,a)+py+pa] .
y, a

(i 2)

The value p of the Lagrange multiplier which fixes
a =a =0 is given by the condition

d lnZe "' dg(P, p)
dp p dp

=0. (13)

At fixed p, the variable a can therefore be expressed as a
function of the Lagrange multiplier, i.e. , a(p) =dg/dp.
The two relations (12) and (13) give g(p, p) (the max-
imum of a Gibbs-like potential) as the Legendre trans-
form of the annealed free energy fz (a Helmholtz-like
potential). As the minimum of a in (12) for p =P is

reached at a =0, one has

(i4)g(P, P) =min [$(y,O)+Py] =$(y, 0)+Py,

which should be compared with (10), where a =a* is a
free parameter different from its self-average a =0.
Furthermore, by the convexity of the logarithm function,
one can prove the inequality

f~ g (p, u) )f~ =g(p, I =o),— (is)

showing that the Gibbs potential is a better approxima-
tion of f than the annealed free energy. In fact,
g(P, P) fz has an important —physical meaning. When
aN is considered as the sum of hot variables, the system
minimizes the annealed free energy fz =g(p, O), while
when a is correctly taken as a cold variable, the system
cannot arrange itself and it should minimize g(p, p). In
other words, W'=g(p, p) fg =ff a(p)dp is the —work
needed to freeze the variable a. This consideration indi-
cates that a macroscopic variable can be of two types: (1)
8'=0. In the thermodynamic limit the variable is not
relevant since no work is needed to freeze it. It follows
that P =0 and g =f~. (2) W & 0. One obtains a better
approximation of the quenched free energy f by comput-

Z
—paN p(„) —

py N —p aN —g(p„p )N~, Q e )

where we have introduced the new thermodynamic poten-
tial
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ing g(p, p) instead of f~, since p&0 and g(p, p) is strictly
larger than f~.

Our arguments can be trivially extended to a set of M
relevant variables [a;]. Such a set will be complete only
if g(p, pi, . . . , p~) f and it might be rather difficult to
individuate it. For instance, it would be very interesting
to understand what are the relevant variables in the
Sherrington-Kirkpatrick model where there is a replica
symmetry breaking in the spin-glass phase.

To illustrate our method, in the following we study two
models where the introduction of few relevant variables
allows us to recover the exact solution, or to get an ex-
tremely good approximation of f.

Let us start with an infinite-range random-field Ising
model with Hamiltonian

H= g Jo;crj+g. h;a;,

cosh[h(o;+p)] =exp[A(p)+B(p)cr;],

where A and 8 are solutions of the equations

cosh[h(1+iu)] =exp[A(p)+B(p)]

and

cosh[h( —I+p)] =exp[A(p) —B(p)],
obtained by taking o; = + 1. After some trivial algebraic
manipulations, one thus gets

Ze "' = g exp[N[A(p)+ 2 Jm +B(p)m]],
(e, -+ t)

(20)

where m =P; a;/N —is the magnetization density. The sum
over the thermal configurations can be transformed into
an integral over the magnetization, that is,

where J is a constant coupling and the magnetic fields h;
are independent identically distributed random variables
with zero mean value. In this model InZ~lnZ, indicating
the presence of at least one relevant variable besides y.
Let us limit ourselves to considering the disorder realiza-
tions of [h;[ that satisfy the law of the large numbers,
that is,

1
N

a= —gh; =0.
A

We can thus compute the annealed average over the h
distribution,

Ze "'~= g exp —' g m;~, +g h;(o;+ p)
4, -+i) &i)j

where P=1 is chosen for simplicity. Using the indepen-
dence of the random variables h;, the average over the
disorder can be performed:

exp —g Jcr;oj exp gh;(cr;+p) . (18)
ftX& + lI N l) j

To be explicit, we consider the binomial distribution h;=+ h with respective weights —,', so that (18) takes the
form

1
N

exp —g Jo;o~ +cosh h(a;+p) . (19)N;)j
One should note the identity

P(m)dmexp[N[A(p)+ —,
' Jm +B(p)m]j, (21)

The usual saddle-point estimation of (21) gives

g(P=I, p) =A(p)+ —,
' J(m*)'+B(p)m* —s(m*),

(23)
where m* is the value of m maximizing the exponent in
the integral. The exact solution for f (see Ref. [41) coin-
cides with g(p, p) where dg/dp~„-=0. Our result shows
that P;h; is the only new relevant thermodynamic vari-
able in this mean-field model.

Let us now describe a less trivial model where one con-
straint is not sufticient to get the quenched free energy by
the Gibbs potential. It is the one-dimensional Ising mod-
el with Hamiltonian

H g Joioi+I+Zhioi ~

where J is a positive coupling and h; =a+bco; is a ran-
dom field with a, b arbitrary constants and co; indepen-
dent random variables identically distributed according to
a standard Gaussian. One can repeat the previous calcu-
lation for the Gibbs potential introducing the variable
a =pro;/N to obtain

where P(m) is given by the binomial factor and can be
approximated for large N by the Stirling formula as
P(m)-exp[ —s(m)N] with

(1 —m)
1

(1 —m) + (1+m)
I

(1+m)

N N

e ii' '" = g Qexp[Ja;cr;~i+ao;]exp[co;(bcr;+iu] =e " +" ~ g +exp[Ja;o;+i+(a+by)a;],
io, -+ ]I (o, =+ 1)

where the disorder average is performed by an integral
over the standard Gaussian P(ro) =(2rr) '~ exp( —ro /
2). The resulting thermodynamic potential is given by
the solution of a one-dimensional Ising model under con-
stant magnetic field H =a+ bp. The free energy of such
a model is well known to be

so that the Gibbs thermodynamic potential is

g (P = I, iu ) = —
2 (b '+ p ') —In y (H [iu ] ) . (25)

y(H) =e cosh(H)+[e cosh (H) —2sinh(2J)]'
(24)
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Although g(p, p) is a much better approximation of the quenched free energy than the annealed free energy g(p, p =0),
it is still difierent from f, as shown in Fig. l. In fact, we can impose a further natural constraint on the system by con-
sidering only the disorder realizations that have the correct mean value and variance for the total magnetic field, i.e. , the
realizations where, besides a =0, one also has az =g; (co; —1)/N =0. To do it, we introduce a second Lagrange multi-
plier p2 related to the new variable a2, as well as the generalized thermodynamic potential g2(p, p, p2) defined by the re-
lation

N

e ' '"'"' = g Qexp[jcr; cr;+ )+acr;]exp[co;(bcr;+ p)+ p2(co2 —1)] .
fo, =+ 1)

After some trivial Gaussian integrations, the problem is
again reduced to the solution of an appropriate one-
dimensional Ising model without disorder which has free
energy given by (24). One thus finds

b2+p2
g2(P = I,p, p» = —p2—

2(1 —2pp)
—

2 ln(1 —2p2) —ln y(H [p,p2] ), (26)

with H =a+ bp/(1 —2p2). The potential gz becomes
equal to g for p2=0. The maxima of g2 are reached at
p =p], p2 =p2 given by the relations

c)gz c)g2

ui u2 t)» ui u2

Figure 1 shows the potentials —g and —g2 whose mini-
ma give increasingly better estimates of the quenched
free energy. The exact solution of the model is not
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known. However, two constraints are not sufficient to ob-
tain f by the corresponding generalized potential. It is an
open issue whether the number of intensive variables [a;j
needed here is finite or not.

Finally, we want to mention that our method can be
applied to estimate the maximum Lyapunov exponent of
products of random matrices which describe many in-
teresting physical phenomena [5] such as the localization
of electrons in random potential (Anderson model).

Our methods could also be useful to get a deeper un-
derstanding of highly frustrated systems. In these cases,
nontrivial combinations of the random couplings (or
fields) should be necessary to define a relevant variable a.
For instance, the variable a =N 'QJ; J is frozen without
work in the Sherrington-Kirkpatrick model, while we ex-
pect that good results can be obtained by fixing the num-
ber of frustrated triples.

In conclusion, we have found a general tool for the cal-
culation of quenched averages, extending the notion of
thermodynamic potentials to disordered systems. Its
range of applicability is extremely wide, varying from
infinite-range models to products of transfer random ma-
trices. It can compete with the replica trick for practical
purposes, and it also allows one to individualize the mac-
roscopic variables which control the disorder. The major
problem is its application to spin glasses with replica sym-
metry breaking where the cha11enge is the determination
of the relevant variables.
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I IG. l. Ising model with J=l and random magnetic field
h;=a+bc@; (a=1, b=l, and cu; normal Gaussian variables).
The solid line is the Gibbs potential —g(P= 1,p) and the
dashed line is —G (A) =min„—g2(P =1,p, A) with g2(P =1,
p, A(p, pq) ) =g2(P = l,p, p2) and A =p/(1 —2p2). The straight
line indicates the numerical result for the quenched free energy
f=2.031 ~0.001. Our approximations are obtained by taking
the minima of the thermodynamic potentials, that is, —g(P =1,
P= —0.81) =2.0530 and —G(A= —0.75) =2.0389 (corre-
sponding to the values P~ = —0.489, P2=0. 198). The annealed
free energy is obtained by —g(P =1, p =0) =2.5029.
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