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The 2D "black hole" action is obtained by a nonstandard dimensional reduction of pure 3D gravity
with a nonzero cosmological constant. Starting from the Chem-Simons formulation of 2+1 gravity, we
obtain the (I+ l )-dimensional gauge formulation given by Verlinde. Remarkably, the proposed reduc-
tion shares the relevant features of the formulation of Cangemi and Jackiw, without the need for a cen-
tral charge in the algebra. The Lagrange multipliers in these formulations appear naturally as remnants
of the three-dimensional theory. The proposed dimensional reduction involves a shift in the three-
dimensional connection whose effect is to make the physical length of the extra dimension infinite.
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The past few months have seen a revival in the study of
the quantum properties of black holes due to the dis-
covery that relatively simple actions in two dimensions
admit black hole solutions [1,2]. These are being inten-
sively studied as toy models in which to investigate
backreaction in Hawking radiation and related issues in

quantum gravity, in particular the formation of black
holes and the final stages of black hole evaporation [2,3].
The hope is to find a consistent quantization scheme for
2D gravity coupled to matter that will answer some of the
questions that are intractable in four dimensions.

We expect the underlying group structure to be crucial
in the quantization process. Exact quantization of three-
dimensional gravity was achieved by Witten using the
fact that it can be rewritten as a Chem-Simons action
for the tangent space group [4,5]. The two-dimensional
"Einstein" action is a topological invariant and therefore
has trivial dynamics. Alternatives include the action pro-
posed by Teitelboim [6] and Jackiw [7] and the above-
mentioned "string-inspired" actions [2,8]. The gauge-
theoretical formulation of the former [6,7], based on the
group SO(2,2), was obtained by Chamseddine and Wyler
[9], Isler and Trugenberger [10], and Fukuyama and
Kamimura [11]. The group formulation of the string-
inspired action has recently been found in two very in-
teresting papers, which oA'er diferent answers. The for-
mulation proposed by Verlinde [8] is loosely based on the
Poincare group ISO (1,1). That of Cangemi and Jackiw
[12] is, in some sense, more "natural, " but at the expense
of introducing a central charge in the algebra.

A general feature of all these two-dimensional actions
is that their gauge-theoretical formulations include extra
fields (Lagrange multipliers) which do not come from the
metric, and whose geometric interpretation is unclear. In
this paper we find a geometric interpretation of these
Lagrange multipliers by a process of dimensional reduc-
tion from pure gravity in three dimensions. They are
remnants of the three-dimensional theory associated with
the generators that disappear in the reduction. In the
process, we recover Verlinde's formulation of the black

hole action, but in a way that shares the good features of
the formulation of Cangemi and 3ackiw. Our starting
point is pure (2+1)-dimensional gravity (with a cosmo-
logical constant) in its Chem-Simons formulation. For
completeness, and because it illustrates the main features
of the reduction very clearly, we first obtain the action of
[6,7] by a perfectly standard dimensional reduction. We
then propose a nonstandard reduction scheme involving a
shift in the three-dimensional connection, which yields
the black hole action of [2,8].

We begin by considering the Einstein action for
(2+1)-dimensional gravity with a cosmological constant

S =)I d xJg (Rg —2A),

where g is the determinant of the metric gtJ(I, J =0, 1,2),
and Rg is the Ricci scalar. ( —A) is the cosmological
constant; in what follows we shall take it to be negative,
i.e., A &0, but the same analysis goes through for A (0.
Our conventions are as follows: We will use capital
letters for three-dimensional indices and lower case
letters for two-dimensional ones. I,J,i,j. . . are space-
time indices, while A, B,a, b. . . are tangent space indices.
The former are raised and lowered with the three-di-
mensional metric gyes or the two-dimensional metric y;~,
the latter with the Minkowski metrics tl~tt =(+1,—I,—1) or tl, t, =(+1,—1). e~ttc is the totally antisym-
metric symbol with e ' = l. In two dimensions,

, so |. ' = l also.
One can also formulate the action (1) in a first-order

formalism. Given coordinates (x ), one introduces an
orthonormal triad [e~], with components e~ =e~ r)/Bx
in the coordinate basis, and a spin connection [cot ] such
that the torsion constraints e (rlletc" —e"ttccoJ et' )
=0 are satisfied. If the eI are the inverses of the e~,
then the metric can be written g;& =eg eJ gyp. The
three-dimensional Riemann tensor is now

Rtjtct. =e~ttcetc eL ~&tcoJ 2 & DFrot
8 C l C D F
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and the equation R —2A =0 becomes

t)I IBJ 2 & BCeil ~J 2 +'E BCel eJ —(I—J) =0 .

The second-order formulation is recovered by solving the
torsion constraints for the co's as a function of the e's and
substituting co(e) in the last equation.

We can rewrite the equations in a coordinate free
way by introducing the one-forms e and ro (here, e"
=dx eI III" =dx IIII ). We then have

(y=dety;, ). e is a Lagrange multiplier enforcing the
constraint R~ —2A=O. In order to obtain this action in

the second-order formulation by dimensional reduction of
the three-dimensional Einstein action, we consider coordi-
nates (x ) =(x',y), we compactify the y coordinate by
identifying the points whose y coordinate diAers by I,
and we impose that all derivatives of the metric in the y
direction be zero. In addition, we parametrize the three-
dimensional metric as

T~ =De~ =de~ —e~ m~ec=o glJ (6)

d~A ] @A ~B~c 1 P~A eBec 0

[PAiPB] ~&ABCJ ~ [JA~PB]

[JA,Je] = &Aec I
(3)

the equations (2) are immediately recognized as the com-
ponents of the curvature two-form of SO(2,2) F=dA
+ & [A,A] =T PA+R JA and the first-order action cor-
responding to (I ) turns out to be the Chem-Simons ac-
tion for this connection [4,5],

5= tr(AdA+ —', A'),
where the exterior product of diAerential forms is under-
stood. [The same is true for SO(3, 1) if the cosmological
constant is positive, or for ISO(2, 1) if it is zero. ]

The "trace" in the action refers to any invariant bilin-
ear form in the algebra, and in this case it is given by the
Casimir C =P~ Jag . Note that the algebra is semisim-
ple, so(2, 2) =so(2, 1)+so(2, 1), with the two factors gen-
erated by MA

—= —,
'

(JA + PA/WA) This means that th. ere
is a one-parameter family of Casimirs (up to overall nor-
malization) C(cr) =MA+M+ + crMA M . All the ac-
tions obtained for diAerent values of o are classically
equivalent in the sense that their equations of motion are
the same, F + =F =0. The Einstein action is obtained
for a= —l.

Another important point is that the Chem-Simons for-
mulation trades diAeomorphism invariance for gauge in-
variance. Both symmetries diAer by a third, "trivial, "
symmetry where the variation of one field is proportional
to the equation of motion of another, in such a way that
the total variation of the action cancels (0+shell) [4,5].

From now on, the indices a, b will take the values 0, 1

only, and we will indicate the index 2 explicitly.
We begin with the action proposed by Teitelboim [6]

and 3ackiw [7]

If we introduce an SO(2, 2) connection A =e PA+re"JA
where P~ and J~ are translations and Lorentz rotations,
satisfying

For simplicity we will impose the ansatz A; =0 (we show
later that our results hold even with nonzero A s). Then,
Jg =ed —

y, and (I) yields (5) plus a total derivative.
This is the dimensional reduction that was proposed in
[71.

Dimensional reduction is also straightforward in the
first-order formulation. Starting with (4) one obtains the
gauge-theoretical formulation of (5) given in [9-11].
They introduce a gauge connection 2 =e'P, +coJ for the
2D anti-de Sitter group SO(1,2),

IP„Pb] =AE,b J, [P„J]=E,$P (7)

and a triplet of Lagrange multipliers g~ transforming un-
der the coadjoint representation. The action is written

5 =
J RAFA =„[g,(de'+e"Ioeb)

+@2(dco+ —,
' Ae,be'e )],

where F" are the components of the SO(1,2) curvature,

F =dA+ —,
' [A,A]

=(de'+e roeb)P, +(dhd+ q Ae,be'e )J.
To obtain this formulation by dimensional reduction,

we need an ansatz for the e, co equivalent to the previ-
ous ansatz on the metric. Since gij=ei'eJ g,I,

—ei eJ,
the dreibein components are independent of y:

, '=e( ), =A;( ), ;",'g. =y;, ( ).
Setting 2; =0, the connection one-forms become

(10)

co' =dy Ivy'(x), BI' =dx'co (12)

e' =dx'e, e =dy N.

We now look at the ansatz for the spin connection.
Any ansatz used in the dimensional reduction must be
consistent with the equations of motion of the three-
dimensional theory. Introducing co" =dr' co; + dy co~

in the Eqs. (2), we find that consistency requires co

=co~ =0, and therefore the correct ansatz is

S=J d xd —ye(R —2A) (5)
We now perform a Wigner-Inonu contraction by re-

scaling the algebra generators
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Ja Ja/u~ P2 P2~/u (i 3)

together with those of the two-dimensional anti-de Sitter
group SO(2, 1),

[Pa, Pb] =Ae, b J2, [J2,Pa] = —e,bP

From now on, J2=J, the two-dimensional Lorentz gen-
erator, and co =co. The rescaled Casimir

pC =P J' —P2J (i 6)

survives in the limit p 0, and the action (4) becomes

Note that J2 cannot be rescaled if it is to generate 2D
Lorentz rotations, since a rescaling would alter its com-
mutation relation with translations. The rescaling of P2
is then determined by the condition that the Casimir be
nondegenerate after the contraction. The commutation
relations (3) become

[P„P2]=Ae,bJ, [J„P2]=p e,bP, [J„Jb]=p e,bJ2,

[Ja,Pb] ~abP21 [Ja J2] eabP

[P„Pb] =Re,bl, [P„J]=e bP

[I,P, ] = [I J] =0,
(22)

which has a nondegenerate Casimir C=P P —
A,IJ. In-

troducing 2 =e'P, + coJ+XaI, the action becomes

f
S =„g F = J~g, (de'+e' toe )

+g2dto+g3(da+ 2 e,be'e ) (23)

(where now A runs from 0 to 3) and is invariant under
the natural gauge transformations SA =dA+ [A, v] for a
gauge parameter v =v'P, +vJ+Xul. Note that, in this
case, F =(de'+e' toeb)P, +de

J+A�(da+
2 e,be'e") and

there are four Lagrange multipliers. Verlinde's formula-
tion is recovered after elimination of a and g3 by their
equations of motion, notably F3=0, which allows us to
set g3 = —k.

To obtain a 2D formulation starting with the 3D
Chem-Simons action, we make the rescalings (13) to
gether with the constant shift

S= dy d x[toy (de +e coeb)
e' —e'+ (X/A)dy (24)

—@(dho+ 2 Aeabe'e )].
Integration over y yields the action (8) (times L ). Notice
that the Lagrange multipliers g =~y g ey @ ap-
pear naturally; they are simply the components of the
three-dimensional connection corresponding to the gen-
erators Jo, J~, and P2 that have been lost in the two-
dimensional theory.

We now turn to the string-inspired model of [2], or
rather to that of [8],

S2=„d x4 —y(d&Rr —X), (i 8)

which is obtained from the action of [2] by a conformal
transformation.

There are two ways of writing this action in a gauge-
theoretical framework. The first one, proposed by Ver-
linde [8] uses the ISO(1,1) group

[P„Pb] =0, [P„J]=e,bP

and writes the action as (A =0, 1,2)

S2=J (ggF" —Xe,be'eb)

r

S =& dy „[to&,(de'+ e coeb) —Ndco —
2 ke,be'e "]

+ ~ ~ ~ (25)

and take the limit where both p and A go to zero. This
procedure gives the action (18) provided p /A 0.

Recall that in both reductions (with and without shift)
we imposed the ansatz 2; =0 on the 3D metric. It turns
out that 2; terms make absolutely no difterence: The ex-
tra terms one obtains in the action are multiplied by coy,
which is forced to be zero by the equations of motion, and
therefore the 2 s decouple from the theory.

Note that in the limit p =A=0, the algebra (14),(15)
is invariant under the interchange of J, and P, . As a
consequence, the rescaled Casimir (16) is essentially
equivalent to that appearing in the ISO (1,1) algebra
with central charge, proposed by Cangemi and Jackiw
(even though P2 is not a central charge). The first term
behaves like P,P' and the second term plays the role of
the Jl term in [12], making the Casimir nondegenerate.
Note that there is no rescaling that will give the central
charge in the algebra while keeping J as the generator of
Lorentz rotations.

With this ansatz, the Chem-Simons action becomes

=J [g, (de'+e toeb)+g2dco —
2 k , ee'be"],

which is invariant under the transformations

Be'=do'+ t."Web+ E' aeb, 6'g'=t. agb+kt."0$,

(20) where . indicates terms that vanish in the limit p, A
0. This is precisely (20) and again we recognize the

Lagrange multipliers as coming from co and e .
The gauge transformations 6A =dv+ [A, v] with

Bco =da, g &~bg

(2i) 9 =e Pa+ NJ+M Ja+ e P2,

v =O'P, +aJ+P'J, +pP2
(26)

The second one, proposed by Cangemi and Jackiw, uses
a central extension of the ISO(1,1) algebra become
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e 2 dna+ &&b~2g + &~bach

+p e [e + () /A) dj']Pi +p & prob

Pro 2 =d~+ p 2e, i, cu'P +Ae, se'0

6ru' =dP'+ e'"arui, + e' ru Pi,

+Ae'~pei, + A [e '+ (X/A) dy] e' &i, ,

6e =dp+e, i, cu'9 +e i, e'P

Spcu' =dP '+ e'"ruPi„S~cu' =0,

Spe = —e,i,e'P, 6~e =dp.
(28)

Note that the shift e e +(X/A)dy corresponds to a
shift & (6&+)/A) and it has the eff'ect of putting all

points in the y direction an infinite distance away. This
shift in & can be made directly in the action (1), or in its
dimensional reduction (5)

In the limit when p and A tend to zero, we recover the
transformations proposed by Ver]inde by setting P' =p
=0. The remaining symmetries of the action change it

by a total derivative, and only aAect the Lagrange multi-
pliers. They are given by

lem is to find specific three-dimensional solutions which
correspond to the 2D black holes. Finally, one could in-
vestigate if there are other rescalings of the three-
dimensional generators which yield interesting two-
dimensional actions.
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Note added. —After completion of this work, we
discovered a paper by Cangemi in which he proposes a
dilTerent dimensional reduction, starting from a (2+ I)-
dimensional model based on an Abelian extension of the
Poincare algebra with three extra generators [151. Sub-
sequently, two more papers have appeared [16] in which
more elaborate reduction schemes are proposed. We
point out that our formulation is minima/ in the sense
that it is the only one in which the starting point is pure
30 gravity.

5 = lim d xd —
y N+ —(R —2A).~-o~ A

(Incidentally, this clearly illustrates that in S~ the two-
dimensional cosmological constant is the same as that of
the three-dimensional theory, whereas this is not so in the
string-inspired action Sq.) Note that this procedure
would give rise to divergent terms in the limit where A

goes to zero in any dimension other than two. The reason
it is acceptable in two dimensions is that the I/A term in

the action happens to be multiplying the Euler charac-
teristic, which is a topological invariant, and does not
aAect the classical equations of motion of the two-
dimensional theory. (On the other hand, the presence of
such a term in the path integral merits investigation. )
This is reminiscent of another dimensional reduction, that
of membranes in D dimensions to strings in (D —1) di-

mensions, in which the fact that the world volume is

changing from 3D to 2D is so special that it allows one to
obtain conformal invariance from the three-dimensional
membrane diff'eomorphisms [13].

Of course the most interesting question at the moment
is the quantization of two-dimensional gravity with
matter. (Both theories considered here have been quan-
tized successfully in the absence of matter [2,6-11], but
the quantization with matter seems a much harder prob-
lem. ) There are a number of ways of coupling matter to
gravity in 2+1 dimensions using the underlying group
structure (see, for example, [14]) and one might gain in-

sight into this problem by studying their dimensional
reduction to two dimensions. Another interesting prob-
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