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A class of models of deposition and evaporation of dimers, trimers, . . . , k-mers is studied ana-
lytically and by simulation. Correlation functions decay as power laws in time, related to broken
symmetries in associated spin Hamiltonians. For k & 3, the number of jammed and evolving steady
states increases exponentially with size. Finite size scaling studies support a phenomenological
diffusive picture for dynamics and indicate universality over A: in many subspaces.

PACS numbers: 05.50.+q, 02.50.—r, 75.10.Jm, 82.20.Mj

Stochastic models of lattice gas dynamics can provide
valuable insight into nonequilibrium behavior and com-
plex dynamics. In this Letter, we introduce a class of such
models motivated by, and capturing some basic aspects
of, simple deposition and evaporation processes involving
k particles at a time. Despite their simplicity, the mod-
els exhibit unusually strong nonergodic behavior, a rich
variety of partially and fully jammed steady states, and
power law decays of dynamical correlation functions.

The models are studied analytically and numerically.
They are equivalent to an interesting new class of quan-
tum spin systems I1], whose simplest nontrivial member
is the Heisenberg ferromagnet. These equivalences elu-
cidate conservation laws and symmetries, and in some
cases relate power laws in correlation functions to Gold-
stone modes. A phenomenological picture of the dynam-
ics based on random walks of unjammed regions through
jammed backgrounds is developed, and suggests that cor-
relation functions have a diffusive tail. This is supported
quantitatively by a Monte Carlo study of Rnite size scal-
ing of the dynamical correlation function; a universal
scaling function is shown to describe dynamics in sev-
eral steady states for various k.

The basic process is the deposition and evaporation of
k-mers on a d-dimensional lattice, where k = 1, 2, 3, . . .
represents monomers, dimers, trimers, etc. Deposition of
k-mers at rate z and evaporation at rate c' are attempted
at random locations; a deposition attempt is successful if

k successive sites are vacant, while evaporation requires
k successive occupied sites. The rule for evaporation al-
lows for reconstitution of k-rners. Our model includes as
a special case (e'=0) random sequential adsorption of k-
mers on a lattice [2], and is related to lattice models of
chemical reactions [3]. It diifers from coordination mod-
els [4] and adsorption-desorption models considered ear-
lier [5, 6) in that both deposition and evaporation involve
k particles in our model —a crucial feature.

The case d=l (linear k-mers on a chain) is typical
and already exhibits very rich behavior. Consequently,
we consider only this case in detail. The operator
which describes the stochastic evolution of the system
is exp( Ht) where t—he "Hamiltonian" H is, for general
k,

R„—:s [2 (1 —o,')] + s' [2 (1 + o,')],
~i+ + ~'

where Q =—Q&+„and cri+ (cri ) is a spin-2 raising
(lowering) operator at site l. This form of Hamiltonian
arises from having represented a particle (or vacancy)
at site l by a pseudospin operator o&' ——+1 (or —1).
The deposition (or evaporation) of a k-rner at A: adja-
cent empty (or full) sites is equivalent to the flip of k

1993 The American Physical Society 1033



VOLUME 70, NUMBER 8 PHYSICAL REVIEW LETTERS 22 FEBRUARY 1993

adjacent spins from down to up (or up to down), and
this is given by the operator Q . Since this process only
occurs with probability c (or s') ( 1, conservation of
probability requires the appearance of a second opera-
tor B„which does not change the up or down state of
any spin. Since exp( —Ht) is a stochastic matrix [7], the
eigenvalues E of H have a non-negative real part. The
steady states are states with E=O while positive energy
eigenstates decay with lifetime 1/E. States without k
adjacent spins up (particles) or down (vacancies) are un-
changed by Q~ and therefore also by R„. These are the
fully jammed states. Dynamics in a jammed environment
is important for the long-time kinetics, and thus will be
discussed later.

A family of conservation laws holds, if, as will be as-
sumed throughout, the number of sites L is a multiple
of k. Divide the chain into k sublattices a = 1, 2, . . . , k
such that site t c o, if t = kp + o. where p is an in-

teger. An important symmetry property can be inferred
from the observation that deposition or evaporation of
k-mers changes the occupation of all k sublattices by
the same amount. The quantities M~p = M —Mp,
where M = QIe crI' is a measure of occupation of sub-
lattice o, , are therefore constants of the motion. Thus
they commute with H. The quantities M p are the in-
finitesimal generators of rotations around the z axis of
all spins on each of the k different sublattices by angles
I9 (n = 1,2, . . . , k) provided that

(2)

The vanishing commutators [M p, H] imply that H is
invariant under such rotation. This can be easily checked
by noting that crI+ ~ exp(+i&I) oI+. This symmetry
plays a crucial role in the following. For the random
monomer case k = 1, there are no cooperative effects
[6]. There is a unique steady state with average coverage
(particle concentration) z/(a + s') . Dynamical correla-
tion functions decay exponentially.

For k & 2, cooperative effects strongly affect the num-
ber and nature of steady states and concomitant dy-
namics. Figure 1 shows Monte Carlo results for
the particle number autocorrelation function C(t)
PI [(cd (0) crI'(t)) —(cd ) ]/4I where the expectation
value is taken in steady state. C(t) and higher or-
der space- and time-dependent correlation functions de-
scribe completely the full adsorption-desorption kinetics.
Evidently C(t) decays as a diffusive power law for the
deposition-evaporation process for k &2. This is at first
sight surprising, since the process contains no explicit
particle diffusion terms. Also shown in Fig. 1 is the ef-
fect of adding particle diffusion: the decay changes from
power law to exponential. The spin Hamiltonian helps
to explain these initially puzzling behaviors.

For the case k=2 (dimers), H involves nearest-neighbor
spin-pair interactions. For the symmetric case z = e', the

0.1: I I I I I I I I[ I I I I I I I I

001:

0.001 =
I

I K I I .I I I I II

io
t (step)

i00

FIG. 1. The autocorrelation function for the deposition-
evaporation process for e = e', L = 1.2 x 10, averaged over

1
100 histories (solid curves) shows power law decay ( t ~)
for A: = 2, 3, 4. The dashed curve is an analytic determina-
tion for k = 2. Single particle di8'usion changes the decay to
exponential (dashed curves at the bottom left).

mapping cr —+ cr—:(cr*, a", cr') = (cr*, cr~, ——cr') on
one sublattice takes H into the Heisenberg Hamiltonian

H = ) —(1 —crI crI+y) .
l

Each of the L + 1 ground states of H corresponds to a
steady state, and is labeled by distinct values of M =
pI o.&'. The calculation of the associated autocorrela-
tion function C(t) is straightforward but lengthy. It
is carried out using selection rules based on the con-
servation of total spin, and is related to the dynamics
of local active patches on an otherwise jammed back-
ground. The calculation shows that the asymptotic long-
time adsorption-desorption kinetics is completely con-
tained in this pair correlation function. Higher order
(for example, dimer-dimer) correlation functions can be
treated by generalizations of the method. The result [8] is

C(t) = ( 4
—m ) exp ( —2 s t ) Ie (2 a t ), where m = M/I

and Io is the Bessel function of imaginary argument.
Figure 1 shows that the Monte Carlo results agree well
with this formula. In terms of the evaporation-deposition
model, the full rotational symmetry of H arises from
the conservation of probability, which implies equal co-
efficients of the transverse terms (describing transitions)
and the longitudinal terms (corresponding to no change).
Since the steady state breaks the rotational symmetry of
H, the Goldstone theorem implies the existence of low-

lying bosons (spin waves) which are responsible for the
asymptotic t & decay of C(t).

Explicit particle difFusion adds an exchange anisotropy
term to H and destroys the rotation symmetry and as-
sociated conservation of M. The resulting gap in the
spin-wave spectrum leads to the exponential decay ob-
served (Fig. 1) for this case.
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For s g s', the sublattice-transformed Hamiltonian
H is non-Hermitian and not fully rotationally symmet-
ric. Nevertheless, all L + 1 steady states can be found
explicitly. Further, C(t) can be found in the sectors
M = + (I/2 —1) by solving a single-excitation prob-
lern. For arbitrary M the long-time behavior of C(t)
can be found [8] by studying the linear response of
steady states to a driving field. The diffusion constant is
D = 2 [s s' (1 —m&) (1 —m&) ]

& [ (1 —m~&) + (1 —m2&) )

with m/, mph' satisfying m/ + mph' = 2M/I arid (1+
m~) (1 —mii) s = (1 —m~) (1+m~) s'. The associated
power law decay is consistent with the breaking of the
continuous symmetry described above Eq. (2) .

The possibility of an exact solution is hinted by the
properties of the operator B„—Q„ in Eq. (1): for k=2,
the operator satisfies two of the three requirements of
a Temperley-Lieb algebra [9], while the third condition
takes a generalized form, reducing to the standard one
for e = z'.

The situation for k & 3 is more complex and inter-
esting. The full phase space of 2~ microscopic config-
urations splits into a very large number I(k, L) of in-
variant subspaces which are not connected to each other
by the dynamics. I(k, L) grows exponentially with I
if k ) 3, in contrast to I(2, L) = L + 1. The ex-
ponential growth can be established as follows. Write
I(k, L) = Ii (k, L) + I*(k,L), where Ii(k, L) is the num-
ber of subspaces of size 1 (each corresponding to a com-
pletely jammed configuration) and I*(k, L) is the num-
ber of larger subspaces. Ii(k, L) may be calculated us-

ing a recurrence relation, as each completely jammed
configuration has no more than k —1 succesive paral-
lel spins. With open boundary conditions, the result
is Ii (k, L) = 2 F~ (L) where Fi, (L) are generalized Fi-
bonacci numbers defined by Ey(L) = P. i Fk(L —j)
with FA;(0) = 1, Fg(L) = 0 for (k —2) & L—& 0.
Asymptotically, Ii (k, I ) A~ where A is the largest
ejgenva], ue of A = 2 A —1.

Purther, the number I* of nontrivial invariant sub-
spaces also grows exponentially with L . Evidence for this
comes from studies of the form of H in the Ising (site-
occupation) basis

~ (oi j ), on finite rings with lengths in
the range 3 ( L ( 18. We find I* p, with p, ) 1.4
for k = 3 and p & 1.6 for k = 4. This exponential
proliferation of subspaces with nontrivial evolution, indi-
cating strongly broken ergodicity, is quite unusual in sys-
tems without quenched disorder. Each subspace A has a
unique [7] steady state

] A, O), which, in the symmetric
case (s = s'), is an equal-weight linear combination of
all configurations

]
(o.i'} ) E A.

It is also possible to form steady states involving linear
combinations of the form ~g ) = P& cA A, 0 ) . For in-
stance, several exact steady states follow from rewriting
H as

H = ) B„ (1 — i'i),

where (i = ct; oi+ + (1/a)oi with a = (s/s') ~" . Prod-
uct eigenstates of (i with eigenvalues mi = +1 such that
mi = m for l on sublattice n, with Q i m = 1, are
steady states which involve all the states

] A, 0) in linear
combinations. Prom these new steady states, many more
can be generated by applying the rotations specified by
(2) since those operations do not change H. All these
states do not share the rotation invariance of the Hamil-
tonian. This broken symmetry requires the existence of
Goldstone modes, which are responsible for the asymp-
totic slow kinetics of the deposition-evaporation system.
Indeed, distorted versions of those rotations [rotations
by 9i of the form A exp(iql) for t E a] generate the
Goldstone modes and also provide their energies.

In the Ising basis, steady states
~
A, O) corresponding

to different subspaces A differ from each other in several
respects. The majority of subspaces have nonzero val-
ues of the conserved quantities M~ —Mp, etc. implying
broken translational invariance in the steady state, i. e. ,

pi = (A, O 2(1+ oi')
~
A, O) depends on site l.

Turning to the dynamics, it is useful to introduce the
notion of local jamming —the inability to deposit or evap-
orate owing to the absence of k successive parallel spins.
Steady state dynamics entails a succession of stochastic
transitions between states

i
(oi'j ) in A. The mean rate

of such transitions J(A) = (A, 0] P„R„~A, 0)/L gives
a quantitative measure of the lack of jamming in that
steady state. For nonevolving states, we have J(A) = 0
(maximal jamming). A study of finite systems shows
that for k )3 even the least jammed steady state (that
reached from an initially empty lattice) has fairly low
J ( 0.36' for k = 3, s = s') indicating quite a large
degree of jamming.

We studied dynamics in a jammed environment by
writing and solving evolution equations for a localized
deviation (e.g. , a patch of k+ 1 parallel spins) in an oth-
erwise completely jammed background. Unlike mixed
states such as those described under Eq. (4), the com-
pletely jammed states do not break the continuous sym-
metry of H expressed in Eq. (2) so in their case no power
law decay can be inferred from the Goldstone theorem.
Nevertheless, the deposition-evaporation kinetics induces
a random walk of descendants of the parallel-spin patch
on the lattice. The precise stepping rule and the as-
sociated diffusion constant depend on the details of the

1
jammed background. A power law decay oc (Dt) ~ of
the spin autocorrelation function C (t) follows.

When there is a finite low density of unjammed patches
in a jammed background, there are collisions between
patches (Fig. 2). A plausible hypothesis is that at long
times the only eKect of collisions is to modify the diffu-

1
sion constant. This would imply a difFusive tail ( t & )
in C(t), even away from the single-walker limit. This
hypothesis has been tested by studying the autocorre-
lation function C(L, t) in finite systems of size L. On
general grounds we expect C(L, t) to conform with finite
size scaling in the limit t ~ oo, L —+ oo, t/L constant,
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FIG, 2. A particular history of unjammed regions through
a jammed background (here taken to be antiferromagnetic),
showing characteristic random walk behavior; only updated
spins are shown.
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FIG. 3. Evidence for universality of k-mer kinetics from
finite size scaling, for steady states reached from an initially
empty lattice. Data (averaged over 10 histories) for k=2,
L=28 (circles), k=3, L=54 (triangles), k=4, L=52 (squares)
are shown; a and 6 are metric factors referred to in the text.
The solid curve is the theoretical prediction for the scaling
function.

where 6j and z are critical exponents and Y is a uni-
versal scaling function. a and 6 are system-dependent
(nonuniversal) metric factors. If the "diffusion hypothe-
sis" is valid, (5) should hold irrespective of the value of
k. Figure 3 shows the collapse of numerical data for
k=2, 3, and 4 in the least jammed subspace, on set-
ting 6 =

2 and z = 2 as implied by the diffusion hy-
pothesis. The solid curve is an analytical determina-
tion of the scaling function (possible because the prob-
lem is exactly solvable for k=2). Explicitly, we have

Y(y) =
&

y& g +& exp ( 47rn~y) . —The good agreement
between k=2, 3, and 4 lends support to the diffusive pic-
ture, even in the subspace with the least jamming, where
collisions are most frequent. Similar numerical studies re-
veal that while the diffusive picture continues to hold in
other subspaces (including translationally noninvariant
ones), it may fail in yet others, where z ( 2 is suggested.

Generalizations of the deposition-evaporation models
to include particle diffusion (already mentioned), k-mer
diffusion, and nearest-neighbor cooperative effects are
clearly of interest. Other interesting extensions to mixed
k-mer, k'-mer cases and to higher dimensions are under
consideration. For example, dimers with c = z' on the
square lattice share many of the properties detailed above
for the case k=2, c = z', d = j. , because sublattice map-
ping to the Heisenberg model is again possible. While
the general k-mer problem in higher dimensions remains
quite open, it will be shown elsewhere that the quantum
spin analogy is very useful in such special cases as: linear
k-rners on the square lattice, mi~ed k-mer k'-mer cases
with k, k' both integer multiples of a common integer,
or addition of particle diffusion or particle deposition or

evaporation to the dimer case.
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