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Solvable Dynamical Model for a Quantum Measurement Process
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A model Hamiltonian describing an energy-exchange process between an ultrarelativistic particle and

a one-dimensional spin array is proposed and solved exactly. Interesting relations with the quantum

measurement problem are discussed.
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Solvable models in quantum mechanics are very useful
because they often provide physicists with a clear under-
standing of the physical phenomena involved. In particu-
lar, they are very helpful in order to comprehend the so-
called quantum measurement problem [1,2]. A famous
model Hamiltonian originally proposed by Hepp [3] is a
good example of this sort, and has been extensively stud-
ied by several authors [4-8] because, in spite of its sim-

plicity, it yields rich physical insights.
The above-mentioned Hamiltonian is usually referred

to as the Coleman-Hepp or "AgBr" Hamiltonian, and de-
scribes the interaction between an ultrarelativistic parti-
cle Q and a one-dimensional ¹pin array (D system).
One can think, for instance, of a linear emulsion of AgBr
molecules, the down state corresponding to the undivided
molecule, and the up state corresponding to the dissociat-
ed molecule (Ag and Br atoms). The particle and each
molecule interact via a spin-Aipping local potential.

The total Hamiltonian for the Q+D system is

H =HQ+H',

where HQ is the free Hamiltonian of the particle and H'
the interaction Hamiltonian. These are explicitly written
as

HQ =cp,

n 1

where p is the momentum of the particle, x its position, V

is a real potential, x„(n =1, . . . , N) are the positions of
the scatterers in the array, o.~" is the Pauli matrix acting
on the nth site, and we make use of the caret only for the
position and momentum operators.

This Hamiltonian is a nice model of a typical measure-
ment process and can be solved exactly. However, we
should remark that the above interaction Hamiltonian
does not take into account the possibility of energy ex-
change between the particle and the spin system: The
former never loses (or gains) energy as a consequence of
the interaction. In other words, the energy levels of the
spin system are completely neglected, even though the to-
tal energy is conserved. This is not really satisfactory if
we want to regard the spin system as a detecting device,
because we are implicitly assuming that we are able to
distinguish energetically diAerent states of the array: On
the other hand, this can be done only via a free Hamil-
tonian of the spin system, which is absent in the above
description.

In this Letter we shall improve this situation by taking
into account both the free energy of the D system and the
energy transfer between the Q and D systems. This will

be accomplished by adding the free Hamiltonian of the
spin array and by introducing an appropriate operator
into the interaction Hamiltonian. These modifications
will make the model more consistent and realistic. Re-
markably, we shall see that the model will remain solv-

able if a "resonance condition, " to be defined later, is
met.

Let us start our considerations by writing the total
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Hamiltonian for the Q+D system as

0 =HP+0', HP =HQ+HD, (3)

where HQ and HD are the free Hamiltonians of the particle and of the detector, respectively, and 0' is the interaction
Hamiltonian. These are written as

HQ =cp,
1V

HD =—

Aced

g (I+a3t"~),
n=l

(4)
N

H'= g V(x —x„)a~" exp i cr—3" x
n=l c

N
= g V(x —x„) a( exp —i—x +a'"'exp +t'—x

n=l c c

w here the notation is the same as above, o.3" is the Pauli
matrix acting on the nth site, and atg~ =(a~" ~ ia2t"~)/2.
Notice that the energy difterence between the two states
of the molecule is Aco, and that the previous Hamiltonian
[Eq. (2)] is reobtained in the t0 0 limit.

In contrast with the previous analyses [3-8], we are not
neglecting the free energy of the scatterers, represented
by HD, and are taking into account the energy exchange
between the Q particle and the spin system. This is au-
tomatically accomplished by the interaction Hamiltonian,
whose action can be decomposed in the following way:

Hr„harp,

it„i) = V(x —x„)rp
—hcolc, t t,)),

H I„& r p, t t„&) = V(x —x„) pr+A co/c, J ~„i),

p and the nth molecule is undivided (spin down), and
analogously for the other cases. We understand from Eq.
(5) that the interaction Hamiltonian H' satisfies a "reso-
nance condition, " because the energy acquired or lost by
the Q particle in every single interaction matches exactly
the energy required to provoke one spin flipping.

We sha11 work in the interaction picture. The evolution
operator

.r t i iHot/6 —i H(i —t')/0 —i Hot'/ t
U&t, t j=e e e

satisfies

lb ' =H'(t)U(t, t'), with U(t', t') = I, (7)dU(t, t')

where HI„& is the H' term acting on the nth site, rp, J&„&) and Ht'(t), the interaction Hamiltonian in the interaction
represents a state in which the Q particle has momentum picture, can be computed exactly as

H (( ) iHoilhHg i HPi/6—
1V

= g V(x+ct —x„)a~" exp i a3" x—
n=l C

V(x+ct —x„) a(" exp —i x+a" e—xp +i x-
n=l c C

(8)

[Notice that in the interaction picture the operator x is
shifted b ct, while ag~ is multiplied by exp(dicot), so
that a C exp(+ i rox/c ) remains unchanged. ] Observe
that

[HJ(t), Ht'(t')] =0,
so that the solution to Eq. (7) is

where

S(„~=exp

=cos

Vp6'
(n) .

Ac

Vp6 Vp6—ia " usin
Ac

(l2)

U(t, t') =exp ——', Ht (t ")dt" (lo)

OO

t ~ —OO
I

n=l

and a straightforward calculation yields the following 5
matrix:

1V

S'~'= lim U(t, t') = Q 5(,),

CO
u = cos —x, sin —x,0

c c
J

and we have written V08=f V(x) dx. This allows us
to define the "spin-flip" probability, i.e., the probability of
dissociating one AgBr molecule, as
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( —iraq)'(JI —
q ) ' p —j j

C N

q =sin Vo8/hc (i3)

The initial D state is taken to be the ground state lo)jv (N spins down), and we shall first consider the situation in
which the initial Q state is a plane wave. The evolution is easily computed by Eqs. (11)-(13)as

r I/2
Ns' 'Ipo& =g (i4)j-0 j

where we have used the notation Ipj. , j&jv = le&l j&~, with

p~. =p —jhco/c, Ij)~ being the (symmetrized) state of D
in which j molecules are excited.

Let us analyze now a typical interference experiment in

which a divider splits an incoming wave function y into
two branch waves y~ and y2, so that the initial state of
the Q+D system is

+I =(pi+ y2) lo)w, (I s)

where
I y;) =f dp; c(p;) Ip;& (i =1,2) are one-dimensional

wave packets, normalized to unity, and assume that only

y2 interacts with D. The final state of the total system is

+F —
I v i&lo&~+&' 'I v 2)10)&, (i6)

Interference is observed when a phase shifter is inserted
in one of the two paths, and the visibility of the interfer-
ence pattern is readily calculated by Eqs. (14) and (16)

V= '" '" = (OIS lo)jv=(1 —q)
~max+ ~min

(i 8)

It is also interesting to compute the energy "stored" in

the array after the interaction with the particle, as well as
the fluctuation around the average:

(Hp&F N(OI & ' "Hp& ' '
IO)w =qN h rp,

(6Hp)F = [((Hp —(Hp)F) ')F] 'i' =dpqN hco, (i9)

(bHp)F p
(Hp&F qN

i/2

where F stands for final state, p =1 —q, and the trivial
trace over the Q-particle states is suppressed.

Equations (12), (14), (18), and (19) are our main re-
sults. Observe that no approximation has been made in
order to derive them: The result is exact and holds true
for every value of N. We stress also that the quantities in

Eq. (19) could not be calculated starting from the origi-
nal Coleman-Hepp Hamiltonian (2), due to the absence
of the free detector Hamiltonian HD. The N ~ limit
is a somewhat delicate problem, especially in the case
N ~0.

As was to be expected, for finite q, the interference pat-
tern disappears in the N-infinite limit. This is essentially

and after recombination of the two branch waves the
probability of observing the particle is

P =
I +FI',

the case considered by Hepp [3] and Bell [4]. On the
other hand, it is very interesting to consider the limit
N ~, qN =n =finite [7]. In this case, the above quan-
tities become

V—e " ', (Hp)F —nhrp,

//2 (6Hp)F
(6Hp)F —n hrp,

(Hp)F

(2o)

Notice that the simple N ~ limit, with q finite and
q&0, yields only divergent or vanishing quantities. In the
N ~ limit, the quantity q can be shown to coincide nu-
merically with the superselection charge [9] of the so-
called many-Hilbert-space approach to the quantum
measurement problem [10].

It is also worth stressing that qN=n represents the
average number of excited molecules, so that interference
and relative energy fluctuations "gradually" disappear as
n increases [see Eq. (20)]. Observe also that for cp =0 we
recover every result previously obtained: In particular,
the state in Eq. (14) is a generalized coherent state [6,8],
and becomes a Glauber coherent state in the N
qN =finite limit [7].

The next step would be to consider the N ~ limit in
the general co&0 case. This problem is now being investi-
gated [11], and there are interesting connections with
another famous solvable Hamiltonian [12]. The links
with another well-known model [13] in the rp =0 case
were already stressed in Ref. [8].

Finally, we would like to emphasize once more that the
Hamiltonian we proposed in Eqs. (3) and (4) has a direct
physical meaning and yields nice physical insights into
the problem investigated. It would even be possible to
generalize the results obtained to the nonrelativistic Q-
particle case and to the off'-resonance situation. In such
cases, the model would remain solvable within reasonable
approximations. We preferred to limit our attention to
the case considered in this Letter because it avoids un-
necessary complications.
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