final nucleus (or proton), the W, and the μ . E_{ν} , E_{p} , $E_{p'}$, E_{W} , and E_{μ} denote their respective energies, and ν , p, p', W, and μ their respective 4-momenta. The symbol [pq] denotes the 4-product of p and q. m_W , m_p , and m_{μ} are the masses of W, p, and μ .

²R. Hofstadter, F. Bumiller, and M. Croissiaux, Phys. Rev. Letters <u>5</u>, 263 (1960). For momentum transfer $q^{2} \ge 25$ (fermi)⁻² we use the arbitrary extrapolation: $F_1 = 0.4$ and $F_2 = 0$.

³G. E. Masek, A. J. Lazarus, and W. K. H. Panofsky, Phys. Rev. <u>103</u>, 374 (1956).

⁴T. D. Lee and C. N. Yang, Phys. Rev. Letters <u>4</u>, 307 (1960).

⁵T. D. Lee, <u>Proceedings of the 1960 Conference on</u> <u>High-Energy Physics at Rochester</u> (Interscience Publishers, Inc., New York, 1960), p. 566.

ERRATUM

EVIDENCE FOR THE DOUBLE F MODEL OF THE M CENTER, Bruce J. Faraday, Herbert Rabin, and W. Dale Compton [Phys. Rev. Letters 7, 57 (1961)].

F. A. Kröger has kindly pointed out an error of a factor of two in the computations. At low temperature the constant K should be taken as 6 rather than 12 owing to the symmetry of the Mcenter. This correction gives the following results:

	f_F/f_M	fм
KBr (He temp.)	1.6	0.30
KBr (N_2 temp.)	2.0	0.24
KCl (He temp.)	1.4	0.40
KCl $(N_2 \text{ temp.})$	1.5	0.36

These values are now in reasonable agreement with Okura's determination (reference 9). Similarly the constant K for NaCl and LiF at room temperature becomes 3500 and 2200, respectively. Values of r/a become 5.9 for NaCl and 5.1 for LiF.