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This is a report on a numerical computation of
the cross sections for the processes'

v'+Z ~ W + p, + (Z in various states),

by

1/22 1/4 g ~ yp 5~ -2
g V ' V

(4)

and

v'+Z ~ W + p++ (Z in various states), (2)

The Lagrangian of the W particle and its inter-
action with the electromagnetic field A is taken
to be

where W is the (proposed) intermediate boson for
weak interactions, v' is the neutrino associated
with the p, meson, and Z represents a target pro-
ton or nucleus. Pion production is not included.
The two processes (1) and (2) have the same dif-
ferential cross sections because of the following
theorem:

Theorem 1. For process (2) consider a mirror
image of process (1) with all momenta and helic-
ities (i.e. , polarization along direction of motion)

of the corresponding particles reversed. The dif-
ferential cross sections to the lowest order in e
and g are identical.

To prove the theorem we perform the operation
CR (where C = charge conjugation and R = space
inversion) on the leptons and W, and the operation
g on the nucleus. The theorem follows immediate-
ly.

Another theorem that is useful is:
Theorem 2. Consider reaction (1). The differ-

ential cross sections to the lowest order in e and

I are unchanged under a mirror reflection of all
momenta, if the helicities are held fixed.

To prove this theorem we perform a time-re-
versal operation and prove that the matrix element
changes into its complex conjugate.

The interaction Lagrangian of the 8' with the lep-
tons is taken to be'

=i~ y y (1+y )g,p *+Hermitian conjugate,
int p. 4 X 5 v'

= ='(8A /8x ) ——'G G
p, v pv pv

where

=8A /8x -8A /8x,
jL( v v p, p. v

G =8 -8
pv p, v v

8 = 8/8x -ieA
p, p, p,

e = (4v/137)"'.

The parameter ~ is related to the magnetic mo-
ment of the W (along its spin):

(eri/2mc) (1+~). (8)

There are two Feynman diagrams that contribute
in the lowest order to (1), as illustrated in Fig. 1,

, and y I denote the fields describ-
, e, , and v . The magnitude of g is' given FIG. 1. Feynman diagrams.
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in which the black circle represents the electro-
magnetic field of the nucleus. It contributes a
factor Vp to the process. For the coherent proc-
ess the nucleus recoils as a whole and we take

2Ze ZV4=, & (q ), U, =V, =V, =O,

where up~ and u are the Dirac spin wave functions
of the final and initial protons, normalized so that

u tu =u ~u =1, (13)O' O' 0 P

R =
2 (p. ) = 0.8948,

where Ze = nuclear charge, and' q =P ' - P. The
form factor FZ is taken to be

Z ) 2 2 2F =(1+-,', q a )

and F, and F2 are the form factors of the proton
which we take from the Stanford experiments.

The differential cross section for (1) is easily
shown to be

with
a = -(1.3 x 10 ' A" ) cm .

do=(32m') '[o +o i'
a b

For incoherent processes on nuclei or for produc-
tion from a free proton, we take

V = (ie/q )u, y
2

p' 4

x(E y +iF2K2(y y -y y )(p-p') ju, (12)

xd pd W5(E +E +E, E E--
p. W P' v P

' (14)

where n~ and ng are the contributions to the ma-
trix element from diagrams a and b. They are

Table I. Total cross section in 10 cm for v'+Z 8' +p + ~ ~ ~, for Z=proton andZ=Fe,
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15.57
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1.41
4.51

0.182
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3.25

0.00217
0.0269
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0.4
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0.006
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6.35
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0.0694
0.657
1.85
3.65
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12.40
20.88

2.66
8.54

17.81

1.48
4.78

10.01

0.0283
0.637
2.12
4.30
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2n = -2egi((v- p, )2+m

and

x f2[fy][wv]+ [L v][qy-)- [I-q][@v]],

2+m 2 -1of = 2egifv-W)2+m

- [fq][yV]+det),~ {2[I~)[~v)+[fv)[qe]- q

I = - 1+v I-[Ip, j[(l-x)W-zq]m
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is computed from

(20)

c (coherent) ( ) (e-1) (tn(), (21)
6mm

o (total) =—Zo + (1-1/Z) cr (coherent).
Z P Z

In this expression the terms Zo~ and vZ(coherent)
are obvious contributions. The correction term
(-1/Z) oZ(coherent) is to subtract out the contri-
butions from those incoherent processes, included
in Zap, which give rise to small momentum trans-
fers, and which therefore are prohibited as inco-
herent processes. (20) is essentially the same as
the corresponding formula used by Masek, Lazar-
us, and Panofsky' for photoproduction of p. pairs.

As is evident from Table I, for high-energy v',
the contribution from the coherent process dom-
inates. The reason for this is well known: For
higher energies, the minimum momentum trans-
fer becomes smaller, and the coherent process
becomes more effective.

An examination of the energy distribution of the
p. and 8" shows that in general the W carries most
of the energy. Consequently the decay p, from the
%' is in general more energetic than the p. pro-
duced in company of the TV.

For completeness, we list some asymptotic
formulas. The total coherent cross section has
been given before, 4~'

( 2(w )z
I

dE &137/' 2mrn 2E
( m 2a

)W

x[-,'z '-z z z ']z -',
lV p v p

(22)

which is also applicable only at very high energies.
Two of the authors (T.D.L. and C.N. Y.) take this

opportunity to thank Dr. H. Goldstine for permis-
sion to use the facilities of the IBM Research Cen-
ter for the numerical computation described in
this Letter.

%e choose units so that 5= c =1 and use the notation
of T. D, Lee and C. N. Yang, Phys. Rev. 119, 1410
(1960jj. A four-momentum has real space components
and pure imaginary fourth component. A four-vector
squared is defined so that p —=pf +pg +p3 +p4 o All
quantities are in the laboratory system. v, p, p', %,
and p denote the 3-momenta of the v', the initial and

This asymptotic formula is, however, only applic-
able for E„much larger than those listed in Table
I.

The asymptotic formula for the spectrum in co-
herent production is

where
In( = In[2(v'12)Z /m a]»l.

v S'
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FIG. 3. Energy spectrum of the p, (a) for protons. (bl for iron. ~ =total energy of p in the center-of-mass sys-
tem. E~= energy of v' in the laboratory system.
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final nucleus (or proton), the 8', and the p. E~, Ep,
Ep&, Eg, and Ep, denote their respective energies,
and v, p, p', 8', and p their respective 4-momenta.
The symbol tpqj denotes the 4-product of p and q.
mg, mp, and m~ are the masses of 8', p, and p .
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F. A. Kroger has kindly pointed out an error
of a factor of two in the computations. At low
temperature the constant K should be taken as 6
rather than 12 owing to the symmetry of the 34
center. This correction gives the following re-
sults:

KBr (He temp. )
KBr (N2 temp. )
KC1 (He temp. )
KC1 (N2 temp. )

1.6
2.0
1.4
1.5

0,30
0.24
0.40
0.36

These values are now in reasonable agreement
with Okura's determination (reference 9). Sim-
ilarly the constant K for NaCl and LiF at room
temperature becomes 3500 and 2200, respective-
ly. Values of r/a become 5.9 for NaCl and 5.1
for LiF.
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