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It is the purpose of this note to point out some
remarkable similarities between the structure of
interactions and the algebra of octonions.

To cha, racterize briefly this strange a.lgebra,
we recall some familiar properties of quaterni-
ons.

X=Xe +X e
n Q

(summation over n =1, 2, 3) is a quaternion if

ee =e e,On np'

quaternion by introducing a further unit vector
e4, (e~, e4) = 0, n = 1, 2, 3. Then by vector prod-
uct formation 2e, = e, x e~, 2e, = e, x e~, -2e~ = e,
xe, . Equations (2) and (8) show tha. t octonion mul-
tiplication is nonassociative and hence does not
yield a, group. However, a,ny two octonions gen-
erate a group; hence Eq. (6) is true as well.

The continuous automorphisms of the en form
the group 6,. In addition we note the following
two discrete operations.

eo -eo~

e ie; n=4, 5, 6, 7; i=(-I)+'.

e e +ee =-26
Q Q

e e =e e.
u p npyy

e~p is totally antisymmetric; e», = l. If the
"components" XO, Xn are real, define

(2)
P, does not, P, does change the multiplication
table (8). P2 adjoins' to an X a "split" X( ), X( )

re+ iXim„where Xre~ &im are orthogonal.
Define N'(X(s)) =N(X er) -N(Xim); then

N'(X Y'
) = N'(X )N'(Y ),

(X, Y) = —'(XY+YX), X =X e -e X00 n n'

N(X) = (X,X).

(3)

(4)

In this real case the norm of the product XS of
two quaternions satisfies

N(SX) =N(XS) =N(X)N(S),

from which by associativity

N(S 'XS) =N(X).

A null quaternion is defined by

X=O: X =X =0.
0 n

(5)

(7)

From Eqs. (2) and (3), (e~, ep) = 6~p so that the
three en are like orthogonal unit vectors.

Quaternions share with real and complex num-
bers the property (5). There exists only one oth-
er number system' (with two variants) for which

Fq. (5) is true, namely, the octonions. The first
variant satisfies in fact all Eqs. (1)-(7)—with two
changes of meaning, however: (a) n, P, ~ ~ ~ =1,
~ ~ ~, 7; (b) espy is totally antisymmetric and

equals +1 for

(nPy) = (123), (145), (167), (246), (275), (365), (374).

(8)

Thus one generates octonions from our starting

M =B(g, m, K, K ).G
(12)

The M components are eigenstates of charge con-
jugation. The "full symmetry" is: global sym-
metry of the type' G and moreover K-coupling
strengths = minus m -nucleon coupling.

Thus the octonion calculus which involves sets
of eight "equivalent particles" automatically pro-

an alternative. version of Eq. (5) (second variant).
q-octonions have q-number fields as compo-

nents. Here too one can define an inner product
by taking the Hermitian average on the right side
of Eq. (3). Let X be a q-octonion, S a real c-
octonion. One shows that Eqs. (5) and (6) are
again true. Thus if N(S) =1, then N(XS) =N(SX)
=N(S 'XS) =N(X), i.e., one can define octonion
gauge transformations of q-octonions.

Let B =Bp —ienBn, M =Mp —ienMn, where the
components of B(M) are spin ~(0) fields. The
equation'

(ye+~)B+iGy, BM = 0

expresses, by Eqs. (2), (7), and (8), the strong
interactions with a high symmetry provided Bo
=A 2 B =2++2 i2 B =Z -Z+ B =Z

1 2

i2"'B, = n + =', -2"'B,=P + =, i2"'B, =P —=,
-2+2B7 =n — Put B = B(A, Z, N, -). Then'
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duces all needed selection rules plus those un-
wanted extra ones implied by too strong a sym-
metry. We now observe that we can adjoin to B
two other octonions, namely 8 ' ' = P,B and B '~'

=PUB, where R = (e„e„e, -e7, e, e„e,
-e,) and is in G, . Replace in Eq. (11) BM by
[B+ c~Bu'+ c,B+']M and the following happens:
In the right qualitative way, the baryon masses
split as 8=1+3+2+2, the meson masses as 8
=1+3+4. Each of the three couplings separately
have equivalent full symmetry, denoted by E, E' ',
E'". respectively. Some partial symmetries are:
E +E ' ' = doublet approximation, E +E"' = Beh-
rends-Sirlin scheme. ' Note that three is the
minimal number of clashing full symmetries
which breaks the degeneracies. The usual charge
operator

able arbitrariness exists, however, partly con-
nected with the group SU(3) (subgroup of G,) of
automorphisms which keep one ez fixed. Lep-
ton conservation induces insufficient restrictions.
Some partial results follow.

Using doublet language, "write B as B(N„N„
N„N4) . Put"

L(v) = 2 ~'B(vn4, -vn, , n„n 4), (15)

&u is a 2 x2 units. rity matrix; (v't7, +)T = -z, .
«r B, one checks that Q is indeed the L electric
charge operator.

Define current octonions" J=LyL, j =By(1 +ny5)
xB. The inner product,

Q =T, +Y', (13)

is the sum of the third components of isotopic
spin and hyperspin and has the following curious
property. With respect to each of the E's sep-
arately, Q itself is isomorphic to a third compo-
nent of angular momentum. (This is not true for
any other nontrivial linear combination of T, and
l', .)

The above example of the lifting of degenera-
cies is not unique. In particular, the present
calculus is not tied to the strange particle pari-
ties.

Consider next the transformations

B-S-'BS, M-S-~MS, (14)

with S a real c-octonion, N(S) = 1. By application
of G„Sca.n be brought into the canonical form S
=expe, $. For infinitesimal $, the transformation
(14) is not in G~. Even so, Eq. (11) with G =0 is
invariant under Eq. (13) as S, B generate a, group.
For Gx0, Eq. (11) becomes (ye+m)B+S[(S 'BS)
x(S 'MS)]S ' =0. For "infinitesimal" $ one finds
that now BM - BM+ "weak" interaction with AT

Thus e, acts as the spurion. For the present
we do not discuss the parity structure of weak non-
leptonic interactions so generated.

If the octonion algebra envelops in some sense
the structure of interactions, one may ask how
the leptons could enter. Here the electric charge
should form one bridge. Especially if two neu-
trinos v, , v, exist, it is interesting to contemplate
the possibility that, rather like M, the lepton is
a self-charge conjugate octonion L. L can be so
constructed that, where (B, Qy&B) is the electric
baryon current, so (L, Qy&L) is the electric lep-
ton current. In treating neutral leptons consider-

describes leptonic transitions, as follows. a = 0, 3:
AS =0, neutral; a =1, 2: AS =0, charged; a =4, 7:
IASi =1, neutral; a =5, 6: I AS i =1, charged. One
finds J, =J, =J, =-O for any v as defined. Hence
there are no neutral

ISSUE

=1 transitions. Let J"'
correspond to v =iT, . One finds J, ' '= J,"'=0.
Thus (J"'+j, Ju'+ j) describes the universal AS
=0 interaction. '3 Let J+' refer to (a) interchange
of v~ with vfc, v, with vjc, (i 0 j) =1, 2; (b) v =i7,
One finds J,"'=J,"'=0, while now J, '",J,"' are
lepton-conserving i AS i

= 1 charged currents. The
two choices for (i, j) are related to the neutrino-
flip question. ' It is perhaps a good aspect that the
absence of i AS I =1 neutral leptonic follows from
a specific algebra. Ii is perhaps a ba, d aspect
that the synthesis of AS =0 leptonic and I AS i =1
is so far not unique. (The use of different L's
is not unlike the use of different B's for strong
interaction asymmetries. )

It should be noted that all results stated here
could have been written without using octonions
at all. The formal structure here described
seemed sufficiently intriguing to communicate,
however. Yet the close connection between oc-
tonion algebra and some aspects of the interac-
tions may be nothing but a strange coincidence.
To be more than that, this algebra should pla. y
a dynamical role."

The author is much indebted to CERN for its
hospitality and financial support. He also wishes
to acknowledge a consultation with I. Ching.

*Permanent address: Institute for Advanced Study,
Princeton, New Jersey.
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Hurwitz ' theorem. For early developments see L.
Dickson, Ann. Math. 20, 155 (1918). For both variants
the components are real (real octonions}.

But rather a so-called quasi-group where the associ-
ative law is replaced by a certain weaker law, For the
present it suffices to state that for octonions this law is:
The associator XP'Z}- (XV)Z is totally antisymmetric
in X, Y,Z.

In this case and also for the q-octonions mentioned
below, we have no longer a division algebra. This does
not matter as we need not take inverses of wave fields.

For the purpose of exposition we consider only tri-
linear interactions and leave aside the question whether
strong interactions are generated by gauge fields.

0 is a T =S = 0 meson conjectured by many authors.
c = 0 is not necessarily excluded. Z=(R+, E )i; K
=(-E',z ).

In a terminology employed elsewhere; A. Pais, Phys.
Rev. 122, 317 (1961).

R. Behrends and A. Sirlin, Phys. Rev. 121, 324
(1961).

Example: 8 =P'8; P' =(e& -e&), n =4,5,6, 7 and

is in G2. Even with all these couplings there remains
a simple 71 -coupling constant relation: (ÃV~) = -(ZZ7t)
=(=-&). Note: P~ corresponds essentially to BM—RIB.

Example: Write the above 8 as B(N, A, Z, "), def ine
8' =8(Ã, c~p5A, Z, c~p~"), and replace in Eq. (11)BM by
8'M. This spreads the masses due to space parity ef-
fects. The curious property of Q is now lost. The ex-

ample in the text may be said to generate splits due to
two isotopic parities.

In the notation of reference 6. As is done in part of
the quoted paper, the doublets are used as a mathemat-
ical device without necessarily insisting on any mass
degeneracy.

C' =-charge conjugate. v; = 2(l+y5)pz. (. is a mass-
less spinor. It is possible but unattractive to put v~

= v2, T = transpose .
~ The four-vector index is suppressed. J will always

have the correct V-A combination due to the very def-
inition of v,;. The jz, m =4, 5,6, 7, have &1'= &~. Also
&1'=

2 currents can be constructed, namely by using
G2 generators; see reference 7.

Including a neutral &S = 0 current J3' ' without pc
terms. To such a current there is so far no objection,
see S. Bludman, Phys. Rev. 115, 468 (1959). (In the
present case the pp and ee terms moreover conserve
parity. ) For a first attempt to tie lepton phenomena to
a group, see S. Bludman, Nuovo cimento 9, 433 (1958).

G. Feinberg, F. Giirsey, and A. Pais, Phys. Rev.
Letters 7, 208(1961). Another ambiguity exists due to the
fact that j need not necessarily be the same for M = 0
as for &S = I.

Note the possibility of linearized octonion wave equa-
tions. Let X be an octonion field, O=e~P~+ie&m&+ mp,
p =1-4, p=5-7,

rnid mass parameters. Put OX=0. Then
O(OX) = (OO)A' = P. Hence we get a standard wave equa-
tion for mass {~& + pg )~~, for each component of 2'.
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