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Lewis' has recently pointed out that a thick-
target yield curve taken at a narrow resonance
with a charged particle beam of high-energy res-
olution should have a maximum just above the
resonance energy followed by a shallow minimum,
before it assumes a constant value. The qualita-
tive explanation for this phenomenon, which the
authors have chosen to call "the Lewis effect, "
is as follows: In passing through target material
a charged particle loses energy in discrete steps
Q. If some of these steps are larger than the
natural width of a narrow resonance, some of the
particles incident on a target at an energy well
above the resonance energy, E&, will jump over
the resonance. If particles are incident at E&
then all will have for a finite time the correct
energy to interact. The yield curve should there-
fore exhibit a peak near E~.

Gamma-ray yield curves from the Aim'(p, y)Si2a
resonance reaction at 992 kev were studied with
a proton beam having an energy spread at half
maximum of about 125 ev. The natural width of
this resonance is 80+40 ev. Yield curves were
initially taken from aluminum films formed in
the target chamber by evaporation of aluminum
from a tungsten filament. A peak in the yield
curves appeared but could not be reproduced.
This was interpreted as being due to the accu-
mulation of surface deposits on the target. A
new method of target preparation was developed
in which aluminum is slowly and continuously de-
posited on the target backing while taking data.

Figure 1. shows several yield curves exhibiting
the Lewis effect. Curve A is a yield curve cal-
culated as outlined below. The data labelled 8
and C were taken during continuous evaporation
of aluminum. Curves D and E were initial runs
from two different targets prepared by filament
evaporation; subsequent runs in both cases failed
to reveal the Lewis peak.

The yield per proton at a mean beam energy E~
from an infinitely thick homogeneous target is
given by

I (E )=n g(E, E.)

x g(E, E)ti(E, E.)dEdE. , (I)R' ' i i'

where n~ is the number of aluminum atoms per
unit volume, g(Et„Ef)dEt is the probability that
a proton in the beam of mean energy Eg has an
incident energy between Ef and Et. +dEt, v(ER, E)
is the cross section for the resonance, and t)(E,
Zf)dE represents the probability that a proton
incident at an energy 8& has an energy between E
and F- +dF- somewhere inside the target.

The probability p(Q, E)dQ that a, proton at an
energy F. will suffer a collision in which it loses
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Flo. 1. Thick-target yield curves showing the Lewis
effect from the A12~(p, y)Si2 resonance at 992 kev. Mean
beam energy, Ey, is plotted relative to the resonance
energy, E~. The position of F~ is determined by the
calculated yield curve. Plateau yields are normalized
for easy comparison of peak amplitudes.
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energy between Q and Q+dQ is given by~

p(Q, E)dQ =(&/~Q')dQ, (2)

where K is a constant. Using for this resonance
Qmin = 12.3 ev and Qmaz = 2160 ev, the function
q(E, Ei) was numerically calculated on a computer
using a Monte Carlo method.

The function g(E, Ef) gives the yield per proton
at energy Ez from a resonance of infinitesimal
width with a monoenergetic beam incident on the
target. To account for nonzero resonance width
and finite -beam energy resolution, the products
of q(E, Ez) values and thin-target yield curve val-
ues were graphically integrated to give curve A
in Fig. 1. The thin-target curve chosen for the
calculation was from a target of 60-ev thickness.

Curve A exhibits the peak and shallow minimum
predicted by Lewis. The amplitudes of the peaks
on experimental yield curves vary by a factor of
two. This strongly suggests that surface contam-
ination of the target plays an important role even
on targets being continuously evaporated. Some
of the discrepancy between the calculated curve
of Fig. 1 and the data points J3, which exhibit the
highest experimentally observed peak, may be at-
tributed to contaminants. On the other hand, the

peak in the calculated curve may also be too high
because of approximations in stopping-power the-
ory.

The point of half plateau yield on the calculated
yield curve, which is commonly assumed to be
Fg, does not fall at ER. For the parameters
used here, the half-value point is about 100 ev
below E~.

Experimental work is being extended to other
resonance reactions and an attempt will soon be
made to utilize higher beam energy resolution.
Calculations have shown that the Lewis peak in-
creases in amplitude as resolution improves and
as the values of Qmax and Qmin increase.
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In recent years, several authors have proposed
theories that predict, either on the basis of vari-
ous forms of global symmetry and the lb, T I

= 2

rule, ' ' or on the basis of extended chirality in-
variance, that the asymmetry parameters in the
decays Z+~p+m'(no) and A~p+n (nA) should
obey the relations @0=-nA. Here we have

n = 2Re(S*P)/(IS I'+ IP I'),

where S and I' are the amplitudes for the two pos-
sible angular-momentum channels in each decay.
Other theories predict the same sign for n, and
nA. S'~ Asymmetry measurements have shown

In, I and InAI to be large. ' Two published
measurements of the sign of nh are in disagree-
ment. '&» The experiment reported in this Letter
was designed to establish the signs and magnitudes
of both n, and nA by measuring the polarization
of the decay proton from Z+~p+m and A ~p+m
with a carbon-plate spark chamber.

Figure 1 shows the apparatus used in the experi-
ment. Positive pions of 1.19-Bev/c momentum
from the Bevatron mere incident upon a liquid-
hydrogen target, producing the reactions @++p ~'
Z +K+, Z ~p+n'. During approximately one-
third of the run, the hydrogen target mas replaced
by a block of lithium deuteride. In this ease, m+

mesons of 1.02-Bev/c momentum produced the
reactions m++n ~A+K+, A ~p+n . The produc-
tion of a Z+ or A hyperon was indicated as in ear-
lier experiments by the identification of a K+
with a counter telescope, including detection of
the decay of the K+ in the large water Cerenkov
counter CK. The hollow-plate spark chamber in
the K+ telescope and the carbon-plate "proton"
spark chamber were triggered by a coincidence
between the K+ telescope signal, the signal from
the "proton" counter telescope that detected parti-
cles with v/c(0. 75 entering the carbon-plate

V'

chamber, and the pulse from a gas Cerenkov
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