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We have found by means of partial-wave disper-
sion relations that a large, rapidly rising inelas-
tic cross section, such as is observed in the vi-
cinity of the second and third pion-nucleon reso-
nances, ' can account for a sharp peak in the elas-
tic scattering. We have calculated the inelastic
contribution to the higher partial waves by means
of the strip approximation to the Mandelstam rep-
resentation, '&' in which the principal mechanism
is the production of the J=1, I=1 pion-pion reso-
nance. Assigning to this resonance a position and
width in accord with recent experimental evi-
dence, we find strong inelastic scattering in an-
gular momentum and isotopic spin states which
phenomenological analyses have suggested as ac-
counting for the resonances. "' Moreover, reso-
nances seem to be implied in approximately the
correct positions, although we are unable at this
stage to make really quantitative calculations.
The same strip approximation calculation seems
to imply a K -p resonance, primarily in the D»
state, at the observed energy, ~ provided the re-
cently observed K~ has J=1 and I= &.

In order to find the effect of strong, rapidly
rising inelastic scattering in a given partial wave,
consider the amplitude f(v), which assumes the
following form in the physical region:

2i5
f(v) = (& -1)/».

Above the inelastic threshold vi, 5 =5g+i61, with
51)0 a,ccording to unitarity. The variable p is
chosen appropriate to each particular reaction;
for equal-mass scattering v =k, the square of
the momentum in the center-of-mass system.
Note that

Im f= If I
'+ (1 - g') /4,

where g =e 2~1. Thus the inelastic contribution

to the cross section is proportional to (1 -q')/4,
so that 51 is determined if the inelastic scatter-
ing in the yartial wave is known. Let us assume
for the moment that this is the case.

In order to keep the argument from being ob-
scured by inessential complications, we shall
now make two simplifying assumptions which
could be relaxed without difficulty. We assume
that A(v) =f(v)/k is the function which is analytic
in the v plane except for the singularities given
by the Mandelstam representation, thereby ne-
glecting some relativistic effects. Since the point
we w'ish to make concerns the effect of the inelas-
tic scattering on the elastic at rather high ener-
gies, we also neglect the unphysical cuts.

We now have the following mathematical prob-
lem: Find a function A =f/k with the properties:
(a) It is analytic in the entire v plane, except for
a cut along the positive real axis. (b) It is real
on the negative real axis. (c) The function f(v)
asSumes the form of Eq. (1), with given 51, when
the positive real axis is approached from above.

The solution is remarkably simple; construct

5(v) =-) dv', I
'll' v. k'(v' —v)"g

Using this formula to define 5 in the entire v

plane, we assert that Eq. (1) provides a solution
to the problem posed. ~" It can easily be verified
that A(v) has only the desired branch cuts, pro-
vided k is defined to have its cut along the posi-
tive real axis.

. Let us now consider the effect upon the elastic
amplitude of a rapidly rising inelastic cross sec-
tion which rises to a value near its unitarity lim-
it, such as is shown by the solid line in Fig. 1.
Equation (3) implies that 5R will be a sharply
peaked function in the neighborhood of the rise
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FIG. 1. A fit to the D~2 pion-nucleon resonance. The
dashed line is the calculated a~(D&2). The dash-dot line
is the absolute square of the elastic amplitude calculated
from the inelastic cross section shown by the solid line.
This inelastic cross section, which joins smoothly with
our calculated values, has been chosen arbitrarily to
produce a fit to the observed elastic scattering. The
dotted line is the unitarity limit for the absolute square
of the elastic amplitude. The variable & is defined as
u =W'-m, where 8' is the c.m. total energy and m is
the nucleon mass.

in the inelastic cross section. The resulting
elastic amplitude for a particular choice of 51
is shown in Fig. 1. Note that the trailing edge
of the peak is controlled mainly by the unitarity
limit. The height and exact shape of the peak de-
pend not only upon the rate of rise of the inelastic
cross section, but also on its behavior at higher
energies. It is possible, as illustrated in Fig. 1,
to find reasonable inelastic cross sections which
imply elastic peaks sharp enough to fit the higher
resonances in pion-nucleon scattering. i~ The in-
elastic cross section itself need not be sharply
peaked to produce a sharp, sizeable peak in the
elastic amplitude. This statement is in principle
subject to experimental verification; for example,
by measuring the absorption in the D~„ I= , pi-
on-nucleon state above the second resonance.
Note that our results do not imply a large elastic
peak at all inelastic thresholds; the condition of
a rapid rise to near-total absorption must be sat-.
isfied.

We turn now to the second part of the problem;
namely, to calculate the inelastic cross section
in each pion-nucleon partial wave and thereby ob-
tain a value for 51 to substitute in Eq. (3). As a
first approximation to the problem, we use the
"strip approximation" to the Mandelstam repre-
sentation, in which only those parts of the double
spectral functions corresponding to the lowest
values of the momentum transfer are calculated. "

FIG. 2. Diagram giving rise to the pion-nucleon spec-
tral function in the strip approximation.

The formulas, which are obtained by applying uni-
tarity to the Mandelstam representation, ' corre-
spond to the process shown in Fig. 2. For the m-n

amplitude we use a J= 1, I= 1 r esonance formu-
la."' Having calculated the double spectral
functions for low momentum transfer, we sub-
stitute them into the equation for the imaginary
part of the scattering amplitude,

ImA(s, t) = — dt'l,a(s, t)
(4)

where the lower limit t, is given by the Mandel-
stam boundary curve. We calculate the spectral
function a(s, t) correctly out to the boundary curve
corresponding to four -pion exchange. The effect
of neglecting these higher-mass-exchange contri-
butions will be small for a sufficiently high partial
wave. The J= & states erill certainly be unreliable,
since the integral in Eq. (4) diverges logarithmic-
ally if we approximate the pion-pion amplitude by
the P wave alone. For these states the contribu-
tions we have neglected, such as the contribution
of the (3, 3) resonance, will surely be important.
Therefore our calculation has some chance of re-
liability only for J~ 2. We project out partial
waves from Eq. (4) and equate our calculated val-
ue of Imft with (I -rP)/4, since the scattering via
intermediate two-pion state is inelastic. Let us
introduce the notation oi(D&,), for example, for
the quantity (1 -q')/4 in the D&, state. Note that
this quantity differs from the actual inelastic
cross section by a factor 4n(J+ 2)/0'. -

Our results for these states are as follows:
vf(D,I,) rises rapidly in the region of the "thresh-
old" for production of a m-m resonance, but rises
to a height exceeding the unitarity limit by almost
an order of ma, gnitude. Our approximation ha.s
broken down because we have not taken unitarity
into account for the processes n+N-m+w+N and
w +7t +N -m+71 +N. It may be possible to remedy
this defect by means of an approximate treatment
of these processes in which the particles are al-
lowed to interact only in pairs. Such a calculation
is now in progress. If we make the plausible con-
jecture that in a correctly unitarized calculation
our large ol(D+, ) will remain sizeable and will con-
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tinue to rise rapidly, we can make a rough calcu-
lation of the position of a peak in the elastic D,
amplitude. With a ~-m resonance energy around
5yygz, this peak coincides with the second reso-
nance. Moreover, the effect of unitarity should
not affect the results of our present calculation
greatly as long as the result is well below the
unitarity limit. Hence we can calculate the in-
elastic cross section in the region where it is
beginning to rise and therefore, according to
the arguments above, we can roughly predict
the steepness of the trailing edge of the elastic
peak. In Fig. 3 these results are compared with
experiment. Also shown is the inelastic contri-
bution to the only other state with J& -', which is
sizeable in our model, the I'» state. It rises
rapidly at an energy coinciding with the third
resonance. These angular momentum assign-
ments seem to be consistent with experiment. '
The way they arise in our model can be under-
stood quite easily: Just above the "threshold"
for production of a m-m resonance, the state in
which the nucleon and the m'-m resonance are in

a relative S wave dominates. This state couples
with the pion-nucleon system in the D+2 and S„,
states. We are unable to calculate gl($~2) relia-
bly, but we do expect vi(D») to rise rapidly in
this region. i5 At a higher energy (thus explain-
ing the separation between the two resonances),
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FIG. 3. The second and third pion-nucleon resonances.
The dashed lines are the unitarity limits for elastic scat-
tering in the Dp2 and I ~2 states calculated from the dou-
ble spectral functions. The dotted line is the unitarity
limit if a background of a saturated 01(D~2) is added.
The points are from Falk-Vairant and Valladas. ~

the relative I' wave of the nucleon and 7t -m sys-
tem will become important. This couples to the
pion-nucleon I'~„P+„and I' , states. Again we
cannot calculate oi(P~, ). We find that ol(F») does
indeed become important in our calculation, but
vl(P») does not seem to attain a sufficiently high
value to produce a large effect on the elastic scat-
tering. This numerical result could be changed
by a more definitive calculation.

The isotopic spin dependence of the diagram in
Fig. 2 is such that the I= ~ state is favored over
the I =

2 by a factor of four to one. This factor
reduces vl(1 "») sufficiently that no analog of the
third resonance is expected in w+-p scattering.
However, ol(D») is still large enough that the
elastic amplitude in this state should show a peak
around 800 Mev in v+-p scattering. This may be
the knee in the cross section which Carruthers
has identified with the D», state. '

We have made a similar calculation for K -p
scattering around 1 Bev/c lab momentum, where
a peak in the cross section has recently been
found. 7 Again we calculate the diagram in Fig. 2,
but now the incident and final mesons are K, and
the intermediate resonance is the K* resonance
found by Alston et al. '" If we assume that the K*
has J =1 (experiments have not yet distinguished
between J'=0 and J=1), then we again find a
strong, rapidly rising al(D») at just the right
position to correspond to the observed peak (see
Fig. 4). This implies a nearly saturated D» con-
tribution to K production at 1.15 Bev jc, the ener-
gy in the experiment of Alston et al. Such a con-
tribution to the process K +p-K +w +P turns
out to be only 1.0 mb, however, which is not in
disagreement with the experimental value which
is of the order of 1 mb. In this process vy(F»)
does not come out to be strong, largely because
of the narrowness of the K* resonance as com-
pared to the m-~ resonance. We see from Fig. 4
that with a reasonable background the Dz, state
does not seem to be able to account for the entire
peak. The difference is probably due to the S&,
state which we are unable to calculate reliably.

If we assume the K* has J=0, we find no large
amplitudes with J) 32, because a nucleon and K*
in a relative S state can then couple only to J= 2

(which is clearly ruled out by the height of the
observed peak). The relative P state does not
contribute strongly for this process. Thus ere
definitely require the K to have J=1 if our model
is to be valid. If we further assume I= -„as in-
dicated by the K* experiment, we find that in K-N
scattering the I= 0 state is favored over I= 1 by a
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FIG. 4. The K -P total cross section. ~ The solid
line is the calculated unitarity limit for elastic scatter-
ing in the Dy2 state, plus a constant background of 30
mb. The dashed line is a fit to the data, obtained by
a suitable continuation of the calculated inelastic cross
section.

P. Falk-Vairant and G. Valladas, Proceedings of
the 1960 Annual International Conference on High-
Energy Physics at Rochester (Interscience Publishers,
Inc. , New York, 1960), p. 43.

ratio of 9/1. This agrees with the fact that no

large peak is seen in the K -n cross section. Our
model implies that there should also be a peak in
the K+-n cross section, but it is impossible to
predict its height from the present crude calcula. —

tion. It is probably considerably smaller tha, n the
K -p peak, because there are more inelastic chan-
nels open in the latter process, which may help to
raise cd(D, ) close to the unitarity limit.

Additional resonances are probably implied in
n -F and K-F systems, although detailed calcula, -
tions must be carried out, which will depend upon
assumptions about strange -particle couplings.
The positions of these resonances will be around
center-of-mass total energy m& ~+my and m~+
+my-, respectively.
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