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Recent experiments of Deaver and Fairbank'
and of Doll and Nabauer' have shown that the flux
in a superconducting cylindrical tube is quantized.
That the flux should be quantized in units of hc/e
was originally suggested by London', the experi-
ments indicate units of about half this amount.
Onsager4 predicted such a result on the basis that
an effective charge e*= -2e, representing that of
a pair, should be used. We shall show that in
tubes of very small diameter and with wall thick-
ness of the order of the penetration depth the unit
may depend on dimensions and be somewhat small-
er than hc /2e.

The theory has been discussed by Byers and
Yang, ' who showed that it is essential to take into
account the statistical distribution of quasi-parti-
cle excitations, and that one could expect a flux
quantum of hc/2e on the basis of the microscopic
theory. They considered, as we shall do here,
states with current flow which exist with nonin-
tegral values of flux.

We shall use the Gor'kov version' of the Ginz-
burg-Landau (G- L) theory' to discuss the effect.
By use of the method of "thermal" Green's func-
tions, Gor'kov showed that the G- L equations,
originally given on a phenomenological basis, may
be derived from the microscopic theory provided
that the temperature is sufficiently close to T~ so
that the local London equations are valid for the
electrodynamics. The only difference from the
original version is that an effective charge e*
= -2e, evidently that of a pair, appears in place
of -e. Since in the experiments, the flux is fro-
zen in as the specimen is cooled below Tc, the
theory is valid in the significant temperature
range.

Gor'kov showed that the effective wave function,
4(r), of the G- L theory may be taken to be pro-
portional to the local value of the energy gap. We
shall take a different normalization for 4 than that
used by Gor'kov, one that is closer to the original
G-L theory. We shall define it so that 4'„ the
equilibrium value of 0, is such that ISO I

= pe/p,
where p~ is the density of superconducting elec-
trons of the two-fluid model and p=Nm, the total
density. The Schrodinger-like equation for 4 may
then be written
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where gyes*= 2ypz and e*= -2e, representing the
charge and mass of a bound pair. This equation
then corresponds to that of the center-of-mass
motion of the pair. The free-energy difference
between superconducting and normal states is giv-
en by integrating over space and multiplying by
N/2, the number of pairs at T= O'K:
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The density of mass flow is

N sh gal 84' e-—I4 I'A(r) .
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n =H 2X'/(2~Nx '); p=H 'Z'/(2~NZ ').
C c (4)

These apply whether or not elastic scattering by
impurities or other imperfections is important
provided that the appropriate value for the pene-
tration depth is used. Limiting expressions ~

'
valid near T~ are

where t= T/Tc, l is the mean free path, and ], is
the coherence distance. The limit l «go applies
to thin films.

In the absence of a magnetic field, a wave func-
tion 4 =40e q' corresponds to a momentum
m*ve =hq/2 m where vs is the velocity of the cen-
ter of mass. The net current is p~v~ and the in-
crease in free energy —,'p~vz', in accordance with
the two-fluid model. ' A superconductor is char-
acterized by a value of pz different from zero.

In the absence of fields and currents, the free-
energy minimum, for I@oI'= n/P = ps/p, is.
Es -En = -Hc'/8w = Nn'/(4-P), where Hc(T) is the
critical field for bulk material.

Gor'kov derived the values of n and P from the
microscopic theory. ' They can be expressed in
terms of Hc and the penetration depth, X(T). Since
pe/p = XL,'/X', where Xl.'= mc'/(4me'N)v' is the
London penetration depth, we have
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q = (2m/L)(n -e*e /hc) (8)

is in the interval -m/L & q & ~/L. The velocity
Us =hq/(2am*) and the free-energy increase will
then be as small as possible.

The electric current density, I=e pens/m, is
quite large even for small values of q. A value
q=&/L, with L-1 cm, gives es -1 cm/sec and a,

current density 1-10' ps/p amp/cm' in a typical
metal. Generally a much smaller current density
is required to produce a unit of flux, so that it is
favorable to minimize the free energy by reduc-
ing q and thus vz to nearly zero. There will then
be very nearly an integral number of flux units in
the cylinder. Values of q corresponding to odd
multiples of m/L would also give zero current
(with a different pairing condition), but with a
free-energy maximum rather than a minimum. '

Appreciable values of q which would give non-
integral units of flux can be expected only if the
thickness of the film and the radius of the cylin-
der are very small. When the external field is
removed, the flux is produced entirely by the cur-
rent flowing in the film, so that

4= 4var Id/c.

To discuss the quantization of flux, we shall
suppose that the specimen is in the form of a
thin film of thickness d&2X on the surface of a
cylindrical tube of radius r and circumference
L = 2m'. The current density will then be sub-
stantially uniform across the film. One may sim-
plify the mathematics by taking x to be a linear
coordinate measuring distance around the cir-
cumference and require periodic boundary condi-
tions, 0 (x+ L) = 4 (x). If 4 is the flux through the
tube, the vector potential A is a constant equal
to 4/L.

Ari appropriate periodic solution of the G- I
equation is3

@= e xp[ 2mi nx /LQ„
where n is an integer. For an arbitrary flux 4
one may choose n so that the residual wave vec-
tor

Setting 1=e*pshq/(8vm'), we may solve for q and
find

q = 2x'e*C /(r'dhc), (10)

where Xa=m'c'/(4''Ps). Substituting in (8) and
solving for 4, we find

4 = (nhc/2e)(1+2Xa/rd) '.
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is mainly the two-Quid model, valid for all temper-
atures, which is required for the present discussion.

Thus we find that for tubes of very small radius,
the flux quantum may be appreciably less than
hc/2e. It is possible that the value of 0.4hc je ob-
served by Doll and Nabauer may be accounted for
in this way. The lead tube which they used had a
diameter of only 0.01 mm and & may have been
abnormally large because of scattering in the film.
It should be noted that g and thus the unit of flux
may change with temperature.
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