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Macroscopic Boson States Exhibiting the Greenberger-Horne-Zeilinger
Contradiction with Local Realism
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It is shown that the recent Greenberger-Horne-Zeilinger "all or nothing" contradiction of quantum
mechanics with local realism can be exhibited on a macroscopic scale where a large number of particles
are incident on each analyzer. We present a formulation of the all or nothing paradox in terms of boson

fields, and suggest how the paradox might be realized using a correlated photon triplet. The suggested
experiment might be readily extended to test, for the first time to our knowledge, quantum mechanics

against local realism for situations of more than one quanta per wave packet incident on each measure-

ment apparatus.

PACS numbers: 03.65.Bz

There has been much interest recently in the quantum

states described by Greenberger, Horne, and Zeilinger

[I] (GHZ) which give predictions contrary to those of all

classical theories, based as they are on the Einstein-

Podolsky-Rosen [2] (EPR) premises of local realism.

The new unexpected feature is that the contradiction with

classical theory can be accomplished in a single run or set

of measurements. This is not the case with the tradition-

al Bell inequality tests [3] where the contradiction is

necessarily statistical and requires data to be collected

over many runs.
In a realistic experimental situation the ideal correla-

tions predicted by the GHZ state would not be obtainable

and hence the conflict with the classical EPR arguments

not in fact revealed so directly. However, Mermin [4]
has recently shown that the contradiction with classical
theories is still stronger than that of traditional Bell in-

equality tests. The violation of Bell-type inequalities de-

rived by Mermin from classical EPR assumptions is pre-

dicted by quantum mechanics to be much greater for the

GHZ experiment.
We show in this paper that the remarkable GHZ pre-

diction can be exhibited on a macroscopic level in the fol-

lowing sense. We consider experiments performed using

only three analyzers (six detectors) but where there is an

arbitrarily large number of particles incident simultane-

ously on each analyzer. One thus makes measurements

on three spatially separated wave packets each consisting

of N (where N can be large) quanta. This is in contrast
with the multiparticle states discussed recently by Mer-
min [4] where the individual quanta emitted are spatially
separated so that there is still only one particle per
analyzer. For the situations discussed in this paper, the
EPR "elements of reality" are thus ascribed to a macro-

scopic system at each spatially separated analyzer or
measurement apparatus. The strong GHZ violation of
the classical predictions is even more surprising at this

macroscopic level [5].
To date local realism has not been proved experimen-

tally incorrect for any system of greater than one particle
per analyzer. It is suggested here how to realize the orig-
inal microscopic GHZ paradox using a single correlated
photon triplet [6]. We suggest that it may be feasible to
extend this proposed experiment to test quantum mechan-
ics versus local realism for these new situations involving

more than one particle per analyzer.
We choose to formulate the arguments presented by

GHZ in terms of boson fields. This is relevant in view of
the fact that the most successful experiments confirming
quantum predictions against those of classical theory
have to date used correlated photon pairs. Because of the
poor efficiency of photon detectors we will la'ter discuss
the GHZ paradox in terms of the Clauser-Horne-Shi-
mony-Holt [7] modifications of the inequalities derived

by Mermin.
First we consider a simple modification of the triple-
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correlation experiment suggested by Greenberger, Horne,
and Zeilinger [1] and Mermin [4]. We will show initially
that the predictions of the following quantum state are in

contradiction with the predictions of all classical (local
realistic) theories:

(a ~+a j+a )++a jt —a j-a j ) ~0)
Iv

N![g„',r!(N —r)] '"

Here the a~"+,aj- (j=1, 2, or 3) are boson creation
operators for six orthogonal field modes. Typically the a~

are of distinct energies, while the + and —refer to or-
thogonal polarizations at the same energy. Alternatively
the + and —might refer to quanta emitted in diII'erent

directions [11. The ~0) symbolizes the vacuum state.
Here we have N quanta generated in each of the a~, a2, a3
energies. This state may describe N atoms emitting pho-
ton triplets in a cooperative fashion so that the quanta are
incident on the analyzers simultaneously. The distinct
energies may be spatially separated into three regions A~.
At each position A~ the measurement is made. Let us

suppose that the detected outputs of the analyzers corre-
spond to the following transformed modes:

d, + (y, ) =(~ aj++e' 'aj )/J2. (2)

If the + and —refer to diferent directions, this mea-
surement may be realized by providing phase shifts of the

a~ with respect to the a&+, and combining the two with

a 50/50 beam splitter. If the + and —are dilferent po-

larizations, the coupling would be achieved by a polariz-
er. Photodetectors measure how many of the N quanta
incident on each analyzer are deAected "up" or "down. "
If a particle is detected up or down we assign to it a
"spin" value of +1 and —1, respectively. We define the
"spin product" SJ~(p, ) as the product of the spins of each
of the N particles, detected at position AJ.

Following Mermin and GHZ we restrict attention to
two choices for each of the analyzer angles, &=0 and
p= —m/2. We shall denote d~~(0) and d~+( —z/2) as
d~"~ and dJ+, respectively, and the measurements Sj~(0)
and Sj ( —z/2) as S~„and S~z, respectively. We now

consider the predictions of the quantum state (1) for
the following sPin Products: S~yS2yS3z S )yS2zS3y&
S ] S2yS3y and S i z S2z S3z. It is convenient to rewrite
~p) in terms of the detected modes d~'+. and d~y~. To cal-
culate (S~,sq~s3y), for example, we rewrite ~w) as fol-
lows:

(df+d2 d3++df+d2pd3 +df-d2+d3++df-dp d3' )" 10)v)=
Nl( Jg) 3N[+N art(N r)]1/2

It is apparent that if N is odd the product SizS2yS3y will always be —1. Similar results hold for S~~S»S3y and

S)ys2ys3 . To calculate (SP,S2„S3„)we transform to the dg~. One finds

v)= (d]+d2+d3+ +df+d2 d3 —+ d) -d2-d3+ +df —d2+d3 ) 10)
(4)

N!( —JP) +[+ or!(N —r)] '

The product Si S2,S3„is always +1, for all N.
Now we follow the original argument of GHZ and Mermin to establish the classical predictions for the spin products.

If we select N to be odd, quantum mechanics predicts that the SP„S2ys3y is always —l. Because the three polarizers
are spatially separated, the EPR premises of local realism apply [2,3]. In short, local realistic theories will assign to
each of the states at Ai before measurement a value for Sj~» and Sj~y, Si'„and Sj~y say, where this value must + 1 or —1,
and we have that Si„S2yS3y=SiyS2zS3y =SiyS2yS3z = —1. Therefore if we examine the Prediction for SizS2zS3z,
since we can write [recalling that each (Sj~y) =1]

s, s;s, =(s;s", s, )(s, s, s', )(s;s, s )= —
1

the classical prediction must be that SizS»S3, is always
—1. This is in strong disagreement with the quantum re-
sult predicted from (1) with N odd, that S~„S2„S3,is al-
ways +1. The contradiction is distinct for arbitrarily
large N, provided N is odd. This is the startling new

6HZ "a11 or nothing" distinction between quantum and
classical which we have now shown may apply to macro-
scopic systems where large numbers of particles are in-

cident on each detector.
%e now consider how to realize the GHZ state experi-

mentally using a correlated photon source. To account
for experimental situations, where the absolute —

1 pre-
diction for S~ S2yS3y will never be achieved in the first
place, we follow the approach of Mermin [4] and derive
the following inequality based on classical (local realistic)

arguments:

F=i(s s"„s)+(s s s )

+(SPS s~„)—(s s s",„&~~2.
According to local realistic or hidden-variable theories,
the averages are expressible in the following form:

(S(.s S"
&
= p(k)dks (X)s (k)S3y(z), (6)

where Sj~(X), Sjy(k) represent the spin products of the N
quanta detected at Aj given the particular set of hidden
variables X describing the state. The p(k) is a probability
distribution over the hidden parameters X. Because
~S~, (k)

~

~ 1 the derivation of (5) follows in a straightfor-
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ward manner along the lines given by Mermin. Clearly,
the quantum prediction of the state (1) for N odd violates
the classical inequality, giving ~F~ =4. This is true for
arbitrarily large N.

It is well known [7] that inequalities of the type (5)
will not in fact be violated for optical systems, with which
we are primarily concerned here, because of the very poor
photodetector efficiencies. Let us detect the N quanta in-
cident on each polarizer, assigning a value to the spin of
each quanta as follows: + 1 for up, —

1 for down, and 0
if not detected. Clearly with very small detection
efficiency factors, the magnitudes of the (SE„Sq„S3„),
etc. , diminish and the inequality (5) is satisfied. Howev-

er, it is well known that one can violate a weaker version
[7] of Bell-type inequalities even in the presence of weak
detector efficiencies. Here we follow arguments similar to
Clauser et al. [7] and present a weaker version of the
Mermin inequality (5).

Let us define the modified spin product for the N quan-
ta at detector AJ. Let SJ&{k)=S~&(A, )/PJ (k), where

S~&(A, ) is the spin product of the N quanta for a given set
of hidden variables, and where we assign a value of zero
to the spin for quanta not detected. Now PE (A, ) is the
probability, for the set of hidden parameters k, that the N
quanta of AJ are all detected. In fact S~&(X) =P+j(X)
—P J(X) where P+ j(A, ) is the probability of an ar-
rangement of the N quanta at AE giving a spin product
~ 1, respectively, and PJ (X) =P+J(lt.)+P J(),). Thus-
~SJ~EE(k) )

~ 1. Now one makes the important auxiliary as-
sumption that the probability PJ (l) of detecting all the
N quanta is independent of the choice of analyzer angles

&J. We may now rearrange (6) to obtain

1~~B.S
c,~BS

c B

A,

B.

B.

A,~ '

FIG. 1. A possible realization of the GHZ state. The B.S.
denotes a 50/50 beam splitter or coupler. The detected modes
are the d~+. The a~- may be phase shifted either p 0 or
—Er/2 relative to the aj+. The diagram is a schematic depiction
only, in that the real distances from the initial sources of
a~, a2, a3 to the final detectors of dj+ are the same.

Ftt = ~(SE„S2yS3y)EE+(SEySQ„S3y)EE+ (SEySiyS3~)EE

(SE S2 S3 )EEI ~2 (g)

No= fp(X)P~ (X)P2 (X)P3 ()i, )d)i, which is the proportion
of runs where all 3N quanta are detected. Thus p(X, ) is

the normalized probability distribution redefined with

respect to the subensemble where all 3N photons are
detected. The (SE,S2yS3y)EE is thus the product of the
spin products calculated at each detector, but where the
average is calculated only over those runs where all of the
3N quanta are detected. The derivation given by Mermin
[4] now applies (as above) to the reduced p(X) and spin

products S/~&(A, ). We have the weaker version of inequali-

ty (5) involving averages calculated only over the detect-
ed subensemble:

(SExS2yS3y)

Np

„p(A,)S „(X)S (k)S (X)dX, (7)

ai =(ia E+ci)/J2, a2 (ia2+ci)/J2, a3 =(ia3+c3)/J2,

a2+ (a E+ic E)/J2, a3+ = (a2+ic2)/J2, a i+ (a3+E'c3)/J2,

where the c~ denote the second vacuum-state inputs to the beam splitters and the aj. are boson operators for the input
number states. The outgoing state after the beam splitters is

We now give a brief discussion of how a state violating

Ftt ~ 2 may be prepared using correlated photon states of
the type generated in parametric down-conversion. We
consider a multiphoton state a( aj aj ~0) input on the
apparatus sketched in Fig. 1. We thus have N quanta in-

where p(X) [p(X)PE (X)P2 {X)P3(X)j/No and we define cident at each input port associated with aJ. The fields
generated after the first set of beam splitters are

(q)=( —iait + f a)+( iaj +a)+)"—( —iaj +a ) (0)/N ''E(K2)'" (10)

The transformations due to the second set of beam splitters and phase shifts of the aj —relative to aj.+ at the spatially
separated regions AJ generate final detected modes dj ~ (pj) given by dj+ =aj++ie' 'aj and dj =iaj++—e' 'ai-. We
define dJ+ =dz+( —Er/2) and dj"+ =dz. +(0) and Sjy and Sj.„asthe "spin" products with the appropriate choices
&J. = —Er/2 and p~ =0, respectively. The subensemble relevant to the weaker inequality (8) is where exactly N quanta
are detected at each spatial region AJ. . We note that the use of the beam splitters in this particular configuration re-
quires the use of a weaker inequality even in the presence of perfectly efficient photodetectors. The terms in the expan-
sion (10) which are relevant are
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n
i "(ai a(-a j ) "(alt+a j+a ji ) 'i0) . (11)r

On substituting the ai+ for the detected modes di+ and
di~'+, it is revealed that the spin products SfySpyS3&,
Si„Sp~,S3y and Si~S~„Sq~are always +1. This is seen

upon careful examination by noting that the r=N —x
term in the expansion (11) may be obtained from the
r =x term by simply replacing the dz with —di —.The
result is that terms of odd powers of di will not contrib-
ute, and the spin product must thus be +1. Similar sub-
stitutions and examination for the Si„S2„S3,case reveal
that for N odd the product S~„S2S3, is always —l.
Thus quantum mechanics predicts a violation of the
weaker inequality (8) for the system depicted in Fig. I,
provided N is odd.

Of course for N=1 we have the original microscopic
version of the GHZ paradox. This may be a useful reali-
zation of the GHZ state, since photon experiments pro-
vide good analyzer efficiencies and sources of correlated
particles. Highly correlated photon pairs generated via

parametric down-conversion have already been predicted
[8] and used [9] to demonstrate violation of traditional
(weaker) Bell inequalities using schemes similar to that
of Fig. I [6]. Here we require a single correlated photon

triplet. The paradox would be as follows: Given that N

quanta are detected simultaneously at each Al, the spin

products Si~S&~S3» S]yS7&S3y& Sf&S&yS3y would be ob-

served to always be —1; the product Si,S2,S3, is pre-

dicted to be always +1 according to quantum mechanics,
but always —I according to the classical EPR premises.

Although three-photon-emitting atomic systems seem

more natural, generation of the photon triplet may be

possible using parametric down-conversion in a way that
is readily extended to test quantum mechanics for the
new situation discussed here of more than one quanta per
wave packet. A single photon state has been prepared ex-

perimentally using down-conversion by Hong and Mandel

[10]. This is possible because detection of a photon in an

idler field a(k) implies that a photon is present in the cor-

responding signal field a(k'). Thus one can prepare a

correlated triplet i 1)i 1)i I) in the three signal fields k, by

detection of a photon in each of the corresponding idler

fields I'~'. We point out, however, that the calculations

presented correspond to situations where the three pho-

tons are incident on the apparatus simultaneously. Re-
cent work by Yurke and Stoler [11] suggests one to use

three independent parametric amplifiers, the three-photon
state being prepared conditiona1 on the simultaneous
detection of a photon in each idler mode k~'. One can
then test for the situations of N (N is odd) photons per
analyzer by preparing N photons in each of the three k~

directions. This is done by detecting % photons in each of
the corresponding idler fields a(ki). The feasibility of the

experiment for larger N values is currently limited by the
eA'ect of poor detector eSciencies. If No photons are

detected by an ine%cient detector, one cannot exclude the
possibility that for example there are actually No+1 pho-
tons incident on the analyzer. The presence of the No+1
state will tend to destroy the GHZ eff'ect anticipated with

just No photons incident. Thus if one chooses to do the
above experiment with N =NO, one needs to operate the
parametric down-conversion at su%ciently low intensities
to ensure that the No+1 state is not generated with ap-
preciable probability. This makes generation of the No
state itself difficult, if No is large [12]. Nevertheless,

No =3 may be possible in the near future and would sig-

nify a new test of quantum mechanics.
To conclude we have presented new aspects of the all

or nothing GHZ contradiction of quantum mechanics
with local realism. The paradox is formulated in terms of
boson fields and is shown to hold even for situations
where large numbers of particles are incident on a single
analyzer. An appropriate experiment is suggested.
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