Comment on "Angular Dependence of the Cyclotron Effective Mass in Organic Superconductors"

Wosnitza *et al.* have reported an anomalous angular dependence of the cyclotron mass m_c in the superconductors (BEDT-TTF)₂Cu(NCS)₂ and (BEDT-TTF)₂NH₄-Hg(NCS)₄ [1]. Both materials possess a quasi-two-dimensional (2D) Fermi surface. Hence Fermi surface areas measured using the de Haas-van Alphen (dHvA) or Shubnikov-de Haas (SdH) effects will vary as $1/\cos\theta$, where θ is the angle between the normal to the 2D plane and the magnetic field *B*.

Wosnitza *et al.* reported that m_c , derived from the temperature (*T*) dependence of dHvA oscillations, had the θ dependence [1] $m_c(\theta) = m_{b0}/\cos\theta + m_{\rm EP}$, where m_{b0} represents a "band-structure mass" and $m_{\rm EP}$ is an "electron-phonon contribution." Most treatments of electron-phonon interactions (e.g., [2]) lead merely to renormalization of the band mass m_b around the Fermi energy; the band structure is still quasi 2D, and band parameters such as m_c will obey a $1/\cos\theta$ dependence. To test this, we have studied magnetotransport in (BEDT-TTF)₂NH₄Hg(NCS)₄ for a range of θ using fields up to 20 T. We find that m_c calculated from the *T* dependence of the SdH oscillations does in fact follow a $1/\cos\theta$ dependence, in disagreement with Ref. [1].

SdH oscillations with fundamental field $B_F = 566.7$ T (cf. Ref. [1]) were visible above $B \sim 5$ T, for $\theta = 0^{\circ}$; $m_c(\theta)$ was estimated from the T dependence of the SdH amplitudes between 0.5 and 5 K using the same formula as in Ref. [1]. However, in our work m_c is the only adjustable parameter; B_F and the Dingle factor were found separately by a direct fit to ten periods of SdH oscillations between 15 and 20 T using the Lifshitz-Kosevitch formula. Particular attention was paid to uncertainties of parameters in the fitting procedure [3]. We obtain $m_c = (2.49 \pm 0.06)m_e$ at $\theta = 0^{\circ}$, $\sim 10\%$ less than the value given by Wosnitza *et al.* [1]. This was also checked by fitting the T dependence of the harmonic ratio (HR). At angles above $\sim 40^{\circ}$, however, our masses become consistent with those in Ref. [1].

Figure 1 shows the θ dependence of m_c/B_F . The advantage of such a plot is that B_F varies accurately as $1/\cos\theta$ [1], so that deviations from the $1/\cos\theta$ dependence of m_c will be seen as departures from a horizontal line; this method also removes errors in θ . The fitted ratio is constant within the errors (Fig. 1, dashed line), as one would expect for a 2D system; our data cannot be fitted using the formula and fit parameters in Ref. [1] (solid line).

Wosnitza *et al.*'s HR vs θ fit for gm_b is excellent; it is the disagreement between their $m_c = 2.73m_e$ and $m_bg/2 = 2.28m_e$ which prompts Wosnitza *et al.* to justify the θ -independent term in m_c . Our $m_c = 2.49m_e$ is closer to the HR value. Note that we have also found dis-

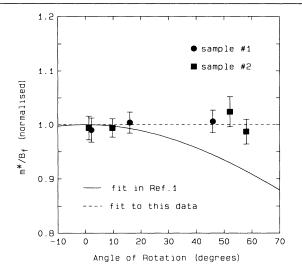


FIG. 1. Angular dependence of m_c/B_F ; see text for details.

crepancies of this size between masses measured using the SdH and HR methods in metallic salts such as $(BEDT-TTF)_2KHg(NCS)_4$, suggesting that the difference is not due to superconductivity.

We believe that the anomalous m_c measured by Wosnitza *et al.* may result from the limited *T* range used (0.4-1.5 K). We have found that high temperatures are important in accurately determining m_c close to $\theta = 0^\circ$. At higher θ the larger m_c leads to a more rapid fall of dHvA amplitude with *T*, so a restricted *T* range would then allow an accurate m_c to be obtained. This would explain why our m_c becomes close to that of Ref. [1] at higher θ .

In summary, we believe that there is no experimental or theoretical justification for the angle-independent effective mass component introduced by Wosnitza *et al.*

M. Doporto, F. L. Pratt, J. Singleton, M. Kurmoo, and W. Hayes

The Clarendon Laboratory Parks Road UK-Oxford OX1 3PU, United Kingdom

Received 22 November 1991 PACS numbers: 74.70.Kn, 71.25.Hc, 71.25.Jd

- J. Wosnitza, G. W. Crabtree, H. H. Wang, K. D. Carlson, M. D. Vashon, and J. M. Williams, Phys. Rev. Lett. 67, 263 (1991).
- [2] J. W. Wilkins, in *Electrons at the Fermi Surface*, edited by M. Springford (Cambridge Univ. Press, Cambridge, 1980), p. 46.
- [3] D. Cline and P. M. S. Lesser, Nucl. Instrum. Methods 82, 291 (1970).