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Shift and Spin Vector: New Topological Quantum Numbers for the Hall Fluids
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We discuss some new quantum numbers (spin vector) for the Hall fluid, representing orbital spin de-
grees of freedom. We show that the spin vectors are quantized. In the absence of impurities, two Hall
fluids with diff'erent spin vectors cannot change into each other without a phase transition and closing of
the energy gap. In principle the spin vector can be measured through its coupling to the curvature of
space. Our formalism may be described picturesquely as a unification of electromagnetism and "gravi-
ty" in condensed-matter physics.

(aKe8a+ 2Ate8a+ 2tose8a ) +aj .
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We use the compact notation aesop= a„e""B„pq f—or any
two gauge potentials a„and P„. Here K is a tc by tr

symmetric integer-valued matrix. Thus the first term in

X is the by now well-known Chem-Simons interaction
ggjat"Ktje„„qrI"aJ. In the fourth term the gauge poten-
tial af couples to j„, the current of the quasiparticles (or
vortices) of type I. The second term in X describes the
coupling of the electromagnetic current J„=patte„„t„I)"at"

to an electromagnetic gauge potential A„. These three
terms appeared in our previous discussions [2], to which
we refer the reader for further details.

What is new here is the third term that describes the
coupling to the curvature of the space [3]. This term is
motivated by the following fact. On a closed topological
2-manifold, such as a sphere [4], over which the Hall
fiuid is defined, the number of electrons N, and the num-
ber of magnetic flux quanta N& going through the mani-
fold are not simply related by vNt, N, (where v is by
definition the filling factor) as is the case on the plane.
Rather there is a shift S in the relation between N, and
N~.

N&= v 'N, —S. (2)

PACS numbers: 73.20.Dx, 02.40.+rn

It has become clear that the order in the quantum Hall
fluid (and also in the closely related chiral spin fluid and
anyon fluid) is not associated with broken symmetries,
but is topological in character [1]. In a series of papers
[2] we have shown that the order may be characterized
by a symmetric integer-valued matrix K and an integer-
valued charge vector t In th. is paper we introduce and
discuss additional topological quantum numbers, namely,
a quantity 1 which we will call the shift and a spin vector
sg.

Recall that the long-distance physics of the Hall fluid
can be described by a Lagrangian [2] of interacting
gauge potentials a]' (I=1,2, . . . , tc). Here It =0, 1,2 de-
scribe the Lorentz indices of a (2+1)-dimensional space-
time. The Lagrangian is the sum of several pieces

The shift 1 is a topological quantum number that be-
comes numerically insignificant in the thermodynamic
limit N„Nt, eo. On a torus the shift 4' always vanishes.
This suggests that the quantum Hall (QH) fluid state
couples to the curvature of the space in a special way to
produce different shifts on difl'erent curved spaces. In or-
der to include such a coupling, we recognize that on a
curved 2-manifold over which our theory is defined there
is another 1-form besides the electromagnetic gauge po-
tential, namely, the connection ta, to which we can couple
a conserved current. The third term in (1) is such a term
that couples co to the spatial components of the current
(2tr) 'ste»q8„att„. (We remind the reader that the con-
nection 1-form co is defined by the equation of parallel
transport de'+ toe' e =0, where e' denotes the zweibein
on the manifold and e' the antisymmetric symbol. For
the sphere, for example, e'=d8, e =sin8dp, and thus
to= —cos8dy. The Riemann curvature R is given in

terms of the connection to by R =dro in complete analogy
to how the Maxwell field strength F is given in terms of
the gauge potential A by F =dA. )

We know that moving a spinning particle along a loop
in a curved space produces a phase sf co in analogy to the
Aharonov-Bohm phase of a charged particle moving in

magnetic field ttftA Here t is th. e charge and s is the an-
gular momentum of the particle. We will call s the orbit-
al spin or simply the spin of the particle. [One should not
confuse this spin with the electron spin. In this paper, the
ordinary spin of the electron will be explicitly referred to
as electron spin. In the FQH (fractional QH) problem,
electron spin acts merely as a label, a flavor quantum
number, so to speak. ] We clearly see the correspondence
s t and m A. Thus, the covariant derivative of a field
is given by tl; i(tA;+sto;), —where t and s are the charge
and spin associated with the field. Since the rotation
group on a 2-manifold O(2) =U(1) is Abelian, s is sim-

ply a real number. An important message that we ob-
tained from the above discussion is that the connection co

couples to the density and the current of the spin, just like
the electromagnetic potential A couples to the density
and the current of the charge. In the FQH states there
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are a number of condensates and each contributes to the
total spin current. Out of the gauge potentials aI we can
construct the spin current J„' = (2z) 'ggsl c&„g'9 QI,
where sr is the spin carried by a particle in the Ith con-
densate. We will call sI the spin vector. This discussion
accounts for the third term in (1).

To summarize, in (1) the first term describes the global
or topological dynamics of the Hall Auid. The second and
third terms may be thought of as describing the coupling
of this dynamics to the electromagnetic field and the cur-
vature of the space, respectively. The reason for intro-
ducing curvature is conceptual: By studying the system's

response to changes in co, we learn about the spin proper-
ties of the local system, in the same way that we learn
about the charge properties of the system by studying its
response to local changes in A. We thus obtain a unify-

ing description of charge and spin. Finally the fourth
term describes the coupling to quasiparticles (or vor-

tices), in some sense the high-energy excitations in the
Auid.

The physics of the Hall fluid may be read ofl' by in-

tegrating out the gauge potentials a. For simplicity let us

begin by suppressing the quasiparticle currents j. We ob-
tain the effective Lagrangian

(tA+sro)K 'c8(tA+sro) .
1

4n

The electromagnetic current is given by

J= = tK 'e8(tA+sro),
~&.a

6'A 2z

and the spin current by

J, = = sK 'e8(tA+sro) .
~&.a 1

bN 2Z

(3)

(4)

(s)

We integrate the time component of these two equations
over the manifold and express the results as a matrix
equation

N,

Ns

't tK 's

sK 't sK 's NR
(6)

Comparing with (2) we recover our earlier result v

Here N, =fd x Jo denotes the number of electrons (tak-
en by definition to have charge 1), N, =fd x Jo the
number of "spin quanta,

"
N& = (2x) ' fdA = (2z) ' fF

the number of flux quanta, and NR = (2n) ' fdho

=(2z) 'fR the number of curvature quanta. [By the
Gauss-Bonnet theorem N~ =2(1 —g), where g is the
genus of the manifold. For the sphere NR =2.] Of the
entries in the 2X2 matrix in (6) we have encountered
previously (rK t), which we identified as the filling fac-
tor on the Hall conductance. The other two entries
(tK 's) and (sK 's) are new to this paper. We see that

N= 1
N

tK 'SA
e ]

R.

=(rK 't) and determine the shift to be

1=(rK ''s)v 'NR. (8)

Thus the spins are given by 2, 2, . . . . One can easily
check that such a choice of the spin gives the right value
of the shift. Intuitively, we may think of s as eff'ective an-

gular momentum carried by the electrons due to the cy-
clotron motion. In a semiclassical picture, we may think
of electrons in diA'erent Landau levels as moving around
in Larmor orbits of diA'erent sizes and hence of diAerent
angular momenta. This, we believe, is the physics behind
(9). The nontrivial spin vectors and consequent coupling
to the curvature are due to the cyclotron motion.

The spin vector in the IQH (integer QH) states is

quantized according to Dirac's argument. Indeed, we see
that for a sphere the connection co = —cos0dp is identical
to the gauge potential A corresponding to a monopole of
twice the Dirac unit. (This is again the statement that
Nz =2 for the sphere. ) A particle carrying spin s going
around a closed loop C will acquire a quantum phase
exp(is)co). To repeat the standard argument, to cover
the northern hemisphere we have to use cojv =(I —coso)
x dp, and the southern hemisphere, ro, = ( —

1
—cosO)da

Requiring that the phase factor acquired by a particle
traveling around the equator be equal when calculated
with other co~ or cog, we obtain that s has to be a half-
integer or an integer.

Because of this quantization we expect that even

though the result in (9) was derived for noninteracting
electrons it should continue to hold in the presence of in-

The shift depends on the genus, but not the metric, of the
manifold, and is thus a topological quantity.

Notice the power of this eftective Lagrangian ap-
proach. The dependence of the shift 1 on the total curva-
ture (or genus) is manifest in (8) without our ever having
to write down the metric explicitly. In particular, for a
torus, S =0.

Now we would like to apply the effective theory (1) to
some simple QH states and determine the spin vector sl
for these states. On a sphere the shift may be worked out
explicitly for noninteracting electrons [4]. For N&=2G
(where 6 =half-integer or integer may be identified as
the strength of the Dirac magnetic monopole at the
center of the sphere) the single electron energy is given

by F- =
2 hro, tl(l+ I ) —G ]/G with the Landau levels

corresponding to I =G,G+ 1,G+2, . . . . The degeneracy
of the 1th level is 2I+1. Thus, if L Landau levels are
filled with noninteracting electrons we have N, =gq-a[2
x(G+k)+1] =LN&+I. and so 1=v=L. The Hall
Quid with L Landau levels filled is described by K equal
to the I XI identity matrix and by iI =I, I = 1 to L. The
Ith Landau level contributes to the shift v '(2I —1).
Referring to (8) we see that the spin of the noninteract-
ing electrons in the Ith Landau level is given by

sr=(I- z ).
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teractions, as long as the interactions are not so drastic as
to close the gaps.

For a FQH state with its strong correlations, we can
read off the shift if we know the wave function explicitly.
In Ref. [2] we derived the result that for a multilayered
wave function described by K in the symmetric basis

(with tt=1, all I): +fJ-,g; (z; —z. ) ", the shift
on the sphere is given by

S=—g(K )fJKJJ.
1

~ 1J

Referring to the general formula (8) we see that the spin

vector is given by

sI 2 Kll ~ (11)
For the hierarchical states described by K" in the
hierarchical basis (with tt =St~) we have

Z =—Z [(K") ~] )tKis
I

(12)

and thus

sf 2 K1]
] h (i3)

K) 0
K 0 K

It follows trivially that the spin vectors simply combine
into (,",) and the shift 1=(v~+ vz) '(v~1~+ v2$2). In

step B, we let K K+C, where C is defined to be a ma-
trix in which every entry is equal to 1. We find in the
symmetric basis that the shift 1 S+NR and s s
+t/2 Using th.ese two iteration rules we can easily work
out the shift and the spin vectors for any state generated
by the iterations. We can use these iteration steps to con-
struct hierarchy states with the same matrix K as in the
standard hierarchy states [2]. However, the states ob-
tained by iteration and the standard hierarchy states may
have different shift and spin vectors. The ambiguity
arises because in step A of the construction, with K] =1,
the associated spin s i may or may not be taken to be 2,
depending on whether K~ =1 is associated with the lowest
or a higher Landau level.

Let us now restore the quasiparticles in (3). The

(The results for I are quoted for the sphere. ) For in-

stance, for the hierarchical state characterized by

pi I
Kh

I p2

and filling factor v=(p2 —l /p~) ' we have S=p~ —l.
[The v=

& state is described by K"=(—
~

2') and I=4.
The v= 7 state is described by K"=(~ —'2) and 1=2.]
From the above we see that the spin vector in the (gen-
eralized) hierarchical FQH states may be quite compli-
cated. However, for the Laughlin states with filling frac-
tion 1/m we have a simple result s =m/2 and S =m

In Ref. [2], we construct K by an iteration procedure.
In what was called step A there, two given matrices K~
and K2 are combined into

prescription, as we can see from (2), is to simply replace
tA+sto in (3) by tA+sai+(e8) '2'. The resulting
effective Lagrangian would then have a jj term which, as
was explained in Ref. [2], tells us about the statistics of
the quasiparticles, a jA term, which tells us about the
charge of the quasiparticles, and finally a jco term, which

is new to this paper. This new term reads

L~J =NSK J (i4)
and tells us that the spin of the quasiparticle of type I is

given by PJKtJ sj. For a generic excitation that con-
tains lt-type I quasiparticles, the total spin, charge, and
statistics are given by

S=glt(K ')tjsj, Q =pit(K ')tjtj,
IJ IJ

(i 5)
—=gltKtJ IJ.8

Note that in general the spin statistics theorem does not
hold.

From Ref. [2), we know that there are a. types of elec-
tron excitations in the Hall fluid, where x is the rank of
K. The electron excitation of the Ith type is specified by
(in the symmetric basis)

IJ =Ktj, I= I, . . . , tc.

Inserting this into the first equation in (15) we obtain
that the spin of the Ith-type electron is given by

g (I) (i7)

The second equation in (15) tells us that the charge of
the electron is QP =tt, that is, equal to 1 in the sym-
metric basis.

We can derive from (17) a quantization condition on

the spin vector in general. The effective theory (1) as
written is self-consistent for any real spin vector s1. How-
ever, such an efl'ective theory may not describe an elec-
tron system. In order for the efl'ective theory to describe
an electron system, we require the presence of x types of
electron excitations as suggested in Ref. [2]. In particu-
lar, we require that one can always add an electron to the
Hall fluid on the sphere. If we add an I-th type electron
on the sphere, such an electron will see effectively

Q, N&+S, Ntt number of flux quanta passing through
the sphere. Dirac's topological quantization requires this
number to be an integer. Because Q, N& is already an

integer and NR =2, we find that S, =s1 must be a mul-(I)

tiple of —, (in the symmetric basis). Generic FQH states
(including multilayer and electron-spin unpolarized FQH
states) are classified by the K matrix, the charge vector t,
and the spin vector s.

The above result and the result in Ref. [2] can be sum-
marized as follows. We can always redefine the fields in

(1) and choose the symmetric basis tt= 1. In order for
the effective theory (1) to describe an electron system, K
must be a symmetric integer matrix with odd diagonal
elements and the spin vector must be 2 times an integer
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vector.
The spin vector si, while topological, is not as robust as

the charge vector tl and the matrix K, since rotational
symmetry may be readily broken by impurities. Elec-
trons scattering on impurities may change their effective
orbital angular momenta (for example, by jumping from
one Landau level to another). Thus the above results
about the spin vector are correct only for pure systems
without impurities.

From (6) we see also that /V, =(sK 't)/V&+(sK 's)
x Np. The quantity that appears in the shift also controls
the relationship between N, and N&, while v, =—sK 's

may be thought of as a "spin filling factor. "
Now we would like to use the concept of the spin vector

to address a physical question. We know there are two
v= —,

' FQH states. One is the electron-spin polarized
hierarchical state. The second has unpolarized electron
spin and is described by wave function of type (3,3,2) [5].
Because the magnetic field breaks the electron-spin rota-
tional symmetry, both states have the same electron-spin
symmetry. The two states are also described by the same
matrix K =(2 3) (in the symmetric basis). We would like

to ask whether the two states belong to the same univer-

sality class or not. In other words, can we deform the
electron Hamiltonian so that one state continuously
change into the other? We notice that the two states
have diff'erent spin vectors: (sl, s2) =( ~, 2 ) for the
hierarchical state and (sl, s2) =( &, —', ) for the (3,3,2)
state (in the symmetric basis). In the absence of impuri-
ties the spin vector is quantized and cannot change con-
tinuously. Therefore, for a pure system the two quantum
Hall states belong to two diff'erent universality classes
and cannot change into each other continuously. Howev-

er, in the presence of impurities, a continuous crossover

may occur.
The discussion on edge excitations given in Ref. [6]

may be formally generalized. The eff'ective X=(4z)
x AJVeBA in (3), where we have introduced the notation
A=(A, co) and Ã= the 2x2 matrix in (6), is not strictly

gauge invariant. If our topological 2-manifold
+ 02 is divided into two regions 0 i and O2 sharing a
common boundary BQ|=—t)02, and in which JV equals

Xl and A'2 respectively under the gauge transformation
A A+ r)A the action S =f„X varies by (4z)
x fAB,JVeBA with 5Ã—= JV'1 —JV2. (The special case in

which there is no Hall fluid in A2 is described by setting
JV2 to zero. ) Thus, the action 8 must be supplemented by
an action defined on the boundary

dt dx dt'dx' —,
' A„(t,x)ll"'(I —t', x —x') A, (t ix') .

(Here p, v=0, 1.) The requirement that the total action
S+S'q must be gauge invariant implies that k "H„,
=(6Ã/4z)k"e„, . As shown in Ref. [6], there must be
gapless edge excitations. For instance, Hoo = —k
&&pz rid/(co —czk). The only difference is that here qz
are 2 x 2 matrices, not just real numbers, satisfying

QAqz =AÃ/2z. Positivity requires that the diagonal ele-
ments of g~ must be positive if c~ is negative, and nega-
tive if c~ is positive. A particularly interesting case
occurs when the two fluids in Q

~ and 02 have the same K
and I (and thus in particular the same filling factor) but
different s. From (6) we see that the 11 entry in hA'

vanishes but not the other entries. From this we deduce
that if there are massless excitations at all they cannot all
move in the same direction.

This discussion, however, is entirely formal since the
microscopic physics responsible for the existence of the
edge would presumably also break local rotation invari-
ance and general covariance. Therefore a nonzero 22 en-
try in AJV may not imply the existence of additional edge
states. In contrast, electromagnetic gauge invariance is

absolute and respected by any microphysics.
We conclude with the cautionary remark that in (1) we

are dealing with curved space, not curved spacetime. (In
other words, of the connection m„'~ in curved spacetime

p =0, 1,2, a, P=0, 1,2, only the components ro,
' b=co; e'

with i =1,2, a, b =1,2 are nonzero. ) After all, the micro-
scopic physics here is not even Lorentz invariant, let
alone general covariant. The eff'ective L, however, may
be promoted to be general covariant, with m„' nonzero.
We remark in passing that we can imagine curved space
appearing in condensed-matter physics if the electron
hopping is such that the mass matrix in the term
fd x ~ (m ') (i';+iA;)y (tl; —iA;)y in the Hamiltoni-
an depends on position. The (m );i may be identified
with Wgg'i(x). However, we may interpret this as an

electron moving on a curved space only if g (=—detg„„
=detgj) is a constant since we do not see how the re-

quisite factor of Wg could appear in the kinetic energy
term in the action fd xdt Jg stir)oy
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