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Dynamic Roughening of Directed Lines
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%'e study the fluctuations of a stretched string, e.g. , a vortex line, moving in a random medium. A

pair of nonlinear equations are proposed to describe the evolution of longitudinal and transverse coordi-
nates. The dynamic scaling of the fluctuations is studied analytically (by renormalization group) and
numerically. In most cases the fluctuations are superdiffusive, governed by a dynamic exponent z =

2 .
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In the past few years, a combination of numerical and
analytical studies has greatly advanced our understanding
of dynamic fluctuations of growing interfaces [1]. The
evolution of the surface profile by addition of particles is

a prototype of problems in open and nonequilibrium sys-
tems where the traditional approach of near equilibrium
statistical mechanics is difficult to apply. Alternatively,
one can regard the evolution equations as more funda-

mental, and proceed by constructing the most general
equations consistent with the symmetries and conserva-
tion laws of the situation under study [2]. Here we apply
such an approach to the motion of a string, e.g. , a disloca-
tion, polymer, or a vortex line, and construct the simplest
local, nonlinear approximation for the dynamics of its

fluctuations. The nonlinearities generated by the overall
drift of the line are relevant and change the scaling of the
fluctuations from the equilibrium form. In particular, in

most cases the dynamics is superdiff'usive, characterized
by an exponent z =

2 .= 3

Consider a vortex line in a superconductor with ran-

domly distributed impurities. It will be stretched along
the direction of the external magnetic field, and for small
driving forces pinned by the impurities. A sufficiently
strong force, however, unpins the line and causes a drift
along the current direction. The impurities now appear
as weak barriers that deflect portions of the vortex line
without impeding its overall drift. We address the dy-
namics of fluctuations caused by such weak impurities on

the unpinned line. When stationary, all directions per-
pendicular to a stretched line are equivalent in an isotro-
pic material. By contrast, for a moving line fluctuations
parallel and perpendicular to the average velocity need
not be similar. These "longitudinal" and "transverse"
fluctuations are denoted respectively by h~~(x) and
h&(x), where x labels the axis along which the line is

stretched, as shown in Fig. 1. The time evolution of a
dense collection of such lines has been studied by Hwa
[31. Here we examine the dilute limit and the fluctua-
tions of a single line.

The average drift velocity i breaks the symmetry be-
tween forward and backward motions and allows intro-
duction of nonlinearities in the equations of motion [2,4].
Assuming that the evolution of the line is dissipative and

local, the simplest such equations are

a, h =v a„h +—(a,h ) + (a„h ) +q, i(x, t),~(( 2 ~x

2
'

2
(I)

a,h. =..a„'h. +)..a„h a,h. +~.(x, t)

The randomly distributed impurities are the origin of the
noise terms ri~~(x, t) and rt~(x, t). Since ht and hs. repre-
sent fluctuations around the mean, the average of g is

zero, while

(rishi(x, t) radii(
x', t')) =2DiiB(x x')I3(t —t'), —

(rid(x, t) r)~(x', t')) =2Dib(x x')8(t —t') . —

Nontrivial correlations or non-Gaussian distributions of
the noise, which may potentially alter the scaling behav-
ior [5,6], are not considered in this paper. In the absence
of transverse fluctuations, Eq. (1) describes a growing
surface [7], and is intimately linked to the randomly
stirred Burgers equation [8,9]. One way to obtain these
equations is to generalize to an n-dimensional space of
fluctuations h, . The drift velocity v, selects a direction in

this n-dimensional space, and by contracting up to two
derivatives of h, we can construct the evolution equation

X

h((

FIG. l. Longitudinal, hll, and transverse, h~, fluctuations of
a line stretched in a direction perpendicular to its average veloc-
ity v.
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2 xhp 8.~h
i), h, [v]6 p+ v2v vp]t), hp+[p)(6, pc„+&, „vp) +p2(, 6p „+p3v vpt ] +tt, (3)

t

It is easy to establish the equivalence of Eqs. (I) and (3)
and to obtain the velocity dependence of the various non-

linearities. Higher-order nonlinearities can be similarly
constructed but are in fact irrelevant ~

The noise-averaged correlations have the dynamic scal-
ing form

I -g

([h.(x, t) —h, (x', t')]') = tx -x't "f,
t t

(4)

where f, are scaling functions. This is easy to prove from
Eqs. (I) in the absence of nonlinearities: The two in-

dependent diffusion equations can be solved to give

gtt =g& =
2 and tt

=
& =2. The renormalization-group

(RG) treatment indicates that all three nonlinear terms
are relevant and may modify the exponents in Eq. (4).
Recent studies of related stochastic equations [3,10] indi-

cate that interesting dynamic phase diagrams may
emerge from the competition between nonlinearities.
Without loss of generality we assume that ktt is positive
and finite (its sign can be changed by h~~

—
h~~), and

focus on the dependence of the scaling exponents on the
ratios X&/X~~ and k, /l~~, as depicted in Fig. 2. (It is more
convenient to set the vertical axis to X,Dj v~~/K~~D~~v~. )
Before pursuing the perturbative RG, we describe a num-

ber of nonperturbative properties of Eqs. (I ).
Galilean invariance (GI).—Consider the infinitesimal

reparametrization

.x =x+Xttet, t =t,

e(x, t) =exp
~llhll(x t ) +t ( ~II~ x ) h J. (x~t )

2v
(e)

The linear diffusion equation

t), P =v8„%+p(x, t)O (7)

then leads to Eqs. (I ) with vt = v~ = v and
[Here Re(p) =X~~rtt/2v and Im(p) =(—

X~~X, ) ' tI~/2v]
This transformation enables an exact solution of the
deterministic equation, and further allows us to write the
solution to the stochastic equation in the form of a path
integral

t (.~,1) I

0(x, t)=,Sx(r )exp — dr " +p(x, r )~ (o,o) 2v

htt =htt+t.'x, hx =h~

Equations (I) are invariant under this transformation
provided that Xtt =k&. Thus along this line in Fig. 2 there
is Gl, which implies the exponent identity [5,9] g~~+z~~

=2.
The Cole Hopf -(CH) transformation is an important

method for the exact study of solutions of the one-
component nonlinear diffusion equation [8]. Here we

generalize this transformation to the complex plane by
defining, for X& &0,

0

l~ X rh

A

V

V Y

v
v

v

v Y

Y

v
v

t;

Equation (8) has been extensively studied in connection
with quantum tunneling in a disordered medium [11],
with + representing the wave function. In particular, re-

sults for the tunneling probability t@t suggest z~~= 2

and gtt
=

2 . The transverse fluctuations correspond to the

phase in the quantum problem which is not an observ-
able. Hence this mapping does not provide any informa-
tion on g& and z& which are in fact observable for the
moving line.

Fluctuation dissipation (FD)-condition The Lan. —ge-
vin equations (I ) lead to a Fokker-Planck equation for
the evolution of the joint probability P[ht(x), h j (x)]. It
can be shown that P has a stationary solution

'P =exp — dx (B„h~~) + (8 h )
2Dtt 2D&

(9)

IV

FIG. 2. Projected RG flows and the dynamic phase diagram.
The conditions necessary for Galilean invariance, Cole-Hopf
transformation, and fluctuation and dissipation are indicated by
dotted, bold, and starred lines, respectively.

provided that ~xvttD& =k&v&Dtt. Thus for this special
choice of parameters, depicted by a starred line in Fig. 2,
if P converges to this solution, the long-time behavior of

the correlation functions in Eq. (4) can be directly read
off Eq. (9), giving g~~ =g~ = —,

'
.

At the point )ii. & =Ex =0, htt and h& decouple, and
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z&=2 while z[[= 2. However, in general, z[~=z&=z un-3

less the effective X& is zero. For example, at the intersec-
tion of the subspaces with GI and FD the exponents
z

~~
=z J =

& are obtained from the exponent identities.=3
To construct the RG equations, we use only one value of
z and check for consistency by requiring that A, & renor-
malizes to a finite value. The renormalization of the
seven parameters in Eqs. (1) can be computed to one-loop
order by standard methods of dynamic RG [5,9]. The re-
cursion relations are straightforward, nevertheless too
lengthy to reproduce here. Instead, the projections of the
RG flows on the two-parameter subspace of Fig. 2 are in-

dicated in this diagram. They naturally satisfy the con-
straints imposed by the nonperturbative results: the sub-

space of GI is closed under RG, while the FD condition

appears as a axed line The. RG flows have different be-
haviors in each quadrant of Fig. 2 as will be discussed in

conjunction with the numerical results.
We also performed direct numerical integration of

discretized versions of Eqs. (1). Similar simulations have

explored the scaling properties of the interface growth

equations [121. We start from a flat initial condition,
with periodic boundary conditions, and a lattice spacing
taken as unity. The time step is chosen small enough to
avoid short-distance instabilities, typically from 0.005 to
0.05. The spatial derivations are discretized symmetrical-

ly. At every step, the average motion of the line is sub-

tracted to make h, (t) =0. The average rms width can be
calculated from Eq. (4), and has the dynamical scaling

form (w, (t,L)) =L 'f,"(L"/t). Here L is the system size

and the scaling functions f, have the asymptotic behav-

iors lim„ f,"(u) =A, u '" and lim„of, (u) =8„
with A„B, being constants. Therefore, the large t, i.e.,
steady-state, behavior of w, scales as I ', whereas the

large L, small t behavior is t ', with P, g,/z, . For the

large t analysis, the steady-state rms width is measured
for system sizes L =16, 32, 64, 128, and 256. For the dy-

namic analysis, system width is measured as a function of

time for I. =60000, up to t =300. Numerical integra-
tions were performed for different sets of parameters in

Eqs. (1), and the exponents obtained by the above pro-
cedure are indicated in Table I. Not all exponents corre-
spond to their true asymptotic values.

The scaling behavior for the different regions in Fig. 2,
obtained by combining nonperturbative, RG, and numeri-
cal results, is summarized below.

A, &A. & &0: Our conclusions in these regions are the
most reliable. The RG flows terminate on the fixed line
where FD conditions apply, hence g~~ =@~=

& . All along
this line, the one-loop RG exponent is z =

2 . These re-
sults are consistent with the numerical simulations. The
measured exponents rapidly converge to these values, ex-
cept when k& or Xx are small.

A, , =0: In this case the equation for h~~ is identical to
that of an interface in I+1 dimensions, and g~~

= —,', with

z~~
=

2 . The fluctuations in h~~ act as a strong (multipli-
cative and correlated) noise on h&. The one-loop RG
yields the exponents z& = —,', g& =0.75 for k& &0, while

a negative k& scales to 0 suggesting z & & z~~. Simulations
are consistent with the RG calculations for A, & & 0, yield-

ing g&=0.72, surprisingly close to the one-loop RG
value. If one considers the mapping —B„h~~~V, Eqs.
(1) (for k, =0 and A. ~ & 0) describe convection of a pas-
sive scalar h&, e.g. , temperature if we set h& to T, by a
velocity field V [9]. The RG flows in Fig. 2 assure GI in

the hydrodynamic limit even if A, ~&At~ initially. Further-
more, our analysis indicates that a nonconserved noise
acting on T is relevant and increases the exponent gT of
thermal fluctuations (([T(x)—T(x')1 ) a: ~x

—x'~ '), at
least for d=l. For A&(0, simulations indicate z&=2
and g& = —,

'
along with the expected values for the longi-

tudinal exponents.
X&=0: The transverse fluctuations satisfy a simple

diffusion equation with g& = —,
' and z& 2. Through the

term k&(8„h~) /2, these fluctuations act as a corrected
noise [5l for the longitudinal mode. A naive application

TABLE I. Numerical estimates of the exponents for various values of model parameters. In all runs, v[l=vt. =1 and
D[[=D~ =0.01, unless indicated otherwise. Values for z are calculated from the ratio of the previous two entries.

Quadrant'

I

I

I

II b

III
Ivb
I-IV boundary
II-I I I boundary
I-II boundary
I I I-IV boundary

0.48
0.75
0.51
0.83
0.50
0.52
0.49
0.48
0.84 '
0.55

zll

0.33 1.46
0.58 1.29
0.29 1.76

Unstable
0.32 1.56
0.30 1.73
0.32 1.53
0 33 1.46
0 71 1.18
0 34 1.62

0.48
0.50
0.56
0.44
0.50
0.57
0.72
0.65
0.50
0.51

0.33
0.27
0.35
0.28
0.34
0.29
0.46
0.32
0.25
0.25

z J.

1.46
1.85
1.60
1.57
1.47
1.97
1.57
2.03
2.00
2.04

20
20
20

5

20
5

20
20
20
20

20
20

5
5

—20
—5

0
0

20
—20

20
2.5

25
—5

—20
5

20
—20

0
0

'See Fig. 2.
Roughening exponents measured from height-height correlations, for D, =0.002.
This exponent increases with system size, suggesting nonscaling behavior.
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of the results in Ref. [5] gives g~~
=

~ and =~~
= —', . Quite

surprisingly, simulations indicate diAerent behavior de-

pending on the sign of k x. For X & & 0, -
[]
=

& and

g~~
= —,', ~hereas for Xx & 0, longitudinal fluctuations are

much stronger, resulting in z~] = 1.18 and g]] =0.84. Ac-
tually, g[[ increases steadily with system size, suggesting a

breakdown of dynamic scaling, due to a change of sign in

This dependence on the sign of Xx may reflect the
fundamental difTerence between behavior in quadrants II
and IV of Fig. 2. A number of recent experiments, from
immiscible displacement in porous media [13,14] to evo-

lution of bacterial colonies [15],observe interfaces in I+I
dimensions with a roughness exponent near 0.8. V;&rious

other fields (e.g. , f]uid pressure, nutrient concentration)
are certainly present in such experiments. The above ex-
ample indicates that coupling to such helds may indeed
lead to larger roughness exponents [16].

(0 and n. , & 0: The analysis of this region (II) is

the most diAicult in that the RG flows do not converge
upon a finite fixed point and X&-- 0, which may signal
the breakdown of dynamic scaling. Simulations indicate
strong longitudinal fluctuations that lead to instabilities
in the integration scheme, making it impossible to mea-
sure exponents by the described method. The equal-time
height-height correlations in Eq. (4) can still be used to
determine eAective roughening exponents at small non-

linearity, disorder, and system size, but the results are not
as accurate or reliable.

~& & 0 and k& & 0: The projected RG flows in this

quadrant (IV) converge to the point ).&/l~~ =1 and
i &D~v~~~/ki~D~~v~ = —1. This is actually not a fixed point,
as D, ] and D& scale to infinity. The applicability of the
CH transformation to this point implies =[~

= -;— and

g~~
= —,

'

. Since X& is finite. we expect =& =.-], = —', but we

have no information on g&. Simulations indicate strong
transverse fluctuations and roughening exponents are
again obtained from height-height fluctuations instead.
Dynamical exponents had to be read ofl at relatively ear-
lier times and are not reliable enough to be conclusive.

In conclusion, we have introduced the simplest non-

linear, local. and dissipative equations that govern the
fluctuations of a moving line in a random medium. By a

combination of exact results, perturbative RG. and nu-

merical simulations, we conclude that in most cases the
relaxation of fluctuations is superdiA'usive v ith an ex-
ponent: = —,

' . Special choices of parameters lead to

decoupling of transverse and longitudinal fluctuations,
and enhancement of roughness exponents. The presented
approach is easily generalized to describe evolution ot a
manifold with arbitrary internal (x E R ) and external
(h C R") dimensions, and to the motion of curves that are
not necessarily stretched in a particular direction [17].
However, in contrast to Ref. [17], the evolution Eqs. (I)
do not have intrinsic reparametrization invariance or lo-

cal arclength conservation. Thus, the motion of a string

(with no line tension) may be subject to additional sym-
metries. Details of the calculations, and such generaliza-
tions, are left to future publications. There are by now

many simulations and experiments on the dynamic
roughening of growing interfaces, explained by such non-

linear evolution [I]. It would be very interesting if simi-

lar realizations can be found for the dynamics of moving
lines. Possibilities include electrophoresis of a charged
linear polymer, or driven line dislocations in a liquid crys-
tal, in addition to the driven magnetic flux line explicitly
discussed. VVe should, however, emphasize that for each
of these examples the assumptions regarding the locality
of interactions and short-range nature of noise correla-
tions need to be carefully examined. Equations (I) thus
provide a start. ing framework f'or studying these prob-

lemss.
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