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Negatively Curved Graphitic Sheet Model of Amorphous Carbon
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A computational method has been developed for generating graphitic carbon structures on an arbi-
trary smooth surface and with a given number of carbon rings. Using both periodic and random surfaces
for constraint, many extended graphitic carbon structures have been generated. The energy relative to
graphite and the bulk elastic properties have been calculated. Like their periodic counterparts, the ran-
dom structures are found to be exceptionally stable. Their radial distribution functions match closely
those of Alms of amorphous carbon grown on NaC1 substrates from sublimated graphite.

PACS numbers: 61.55.Dc, 61.42.+h

The recent discovery of a method to produce fullerenes
in bulk [1] and the observation of graphite tubules [2]
have prompted speculation about new, related forms of
carbon. Recent proposals involve graphitic sheets with

negative Gaussian curvature [3-51. This form of carbon
has been called schwarzite, after the mathematician H.
A. Schwarz who first studied the periodic minimal sur-

faces these structures resemble [6]. Calculations have

shown that some schwarzite structures are much more
stable than C6e [3,5,7,8].

Although crystalline schwarzites could be strong and

lightweight materials [5], it has been noted that random

pore geometries are more likely to be formed [3,5]. To
facilitate the study of these forms of carbon we have

developed a method for automatically generating gra-
phitic carbon structures constrained to an arbitrary
smooth surface and containing any number of carbon
rings. A similar method was developed independently [9]
for the study of fullerenes and has recently been applied
to P-type crystalline schwarzite [7].

Several distinct forms of hydrogen-free amorphous car-
bon are known experimentally [10-12]. The most com-

mon form of amorphous carbon is sp2 rich [13],although
the ratio of sp to sp bonding can be varied under ap-
propriate conditions [10]. A form known as glassy car-
bon can be produced by pyrolysis. It can be thought of as
tangled ribbons of graphite, containing curved sheets of
almost entirely six-membered rings [14]. These curved
sheets are stacked with a spacing similar to that found in

graphite, an arrangement known as turbostratic. Other

sp -rich forms of amorphous carbon have been produced

by magnetron sputtering and thermal sublimation of
graphite. These 1ack crysta11ine ordering within the
sheets [13] as well as having a considerably weakened
(0002) diffraction peak characteristic of the graphite in-

tersheet spacing [12]. Neutron [13] and electron [12]
diffraction studies agree best with structural models con-

taining significant fractions of non-six-membered rings,
though these models only agree up to the length scale of
one ring.

The graphitelike sheets we consider can be curved into
spheres, cylinders, minimal surfaces, or even random sur-
faces. Thus our algorithm requires the specification of an
arbitrary smooth surface defined by the equation f(x)

0, where x denotes position in space. The D, p, and G
minimal surfaces [15] are approximately represented by
periodic functions constructed from low-order Fourier
modes. For example, we used the function

f(x) cos(2irx ~ ) +cos(2xx2) +cos(2zx3)

for the P surface. For the random surfaces we used the
boundary between domains in a three-dimensional fcc Is-
ing model quenched from high temperature with spin-
conserving Monte Carlo dynamics. Neglecting the an-
isotropy due to the underlying fcc lattice, the Ising energy
of the interdomain surface is proportional to its area.
The Monte Carlo procedure lowers this energy and thus
the area as it proceeds. The function f(x) is obtained
from a fast Fourier transform of an array that is —

1 for
down spins and +1 for up spins. The series is truncated
to remove roughness due to the 323-point lattice. This
procedure produces a single sheet dividing the cell into
two nearly equal volumes.

Our method for covering these surfaces with carbon
networks was motivated by considering graphite mono-
layers, in which ring centers form a regular triangular ar-
ray. We generate a candidate structure by forming a tri-
angular array of points with necessary disclinations on an
arbitrary smooth surface. Initially, a number of points
equal to the desired number of rings are placed randomly
on the surface. A cost function is taken to be a purely
repulsive pair potential summed over pairs and is mini-
mized using simulated annealing. An individual step con-
sists of moving a single point randomly on the surface.
On completion, the points define the centers of the rings.
The carbon structure is extracted by triangulating these
points, placing carbons at the centers of the triangles, and
bonding the carbons in adjacent triangles. Finally, the
structure and its unit cell size are relaxed to a minimum
of the energy estimate of Ref. [5]. This energy estimate
was shown to be accurate to within 0.04 eV/atom for
crystalline schwarzite [7,8]. Elastic moduli are computed
from the energetics of small distortions.

Many possibilities were examined for carbon structures
on the periodic minimal surfaces D, P, and G [15].
Structures with high symmetry within the cell were found
with 200 and 216 carbons on the D surface; 56, 168, and
216 carbons on the P surface; and 56 and 216 carbons on
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FIG. 2. View of a random schwarzite model on a surface of
genus 12 per fcc supercell. The structure has 1248 carbons ar-
ranged into 38 five-membered rings (yellow), 394 six-membere

s (blue) 155 seven-membered rings (orange), 12 eig t-
membered rings (green), and 1 nine-sided ring pink . Slower
annealing produces a structure with many fewer five-membered
rings. The cubic unit cell (4 times the volume of the fcc cel
shown) is 42.9 A on a side.

FIG. 1. Views of two new crystalline schwarzites. Each has
216 carbon atoms per primitive unit cell with 80 six-membere

rings (blue) and 24 seven-membered rings (orange). The struc-
ture in &ag ieson a m'( ) 1' P inimal surface in a cubic cell 15.7 on

a side. The structure in (b) lies on a D minimal surface m an

fcc cell whose cubic lattice constant is 24.6

the G surface. Many combinations of numbers and sur-

faces seemed to favor disordered structures (often con-
taining five-membered rings). Even when lower in cost
f t' n symmetric structures were comp utationallunc ion,

y withcostly to genera e.t . Symmetric structures were foun wi

216 atoms on each of the three minimal surfaces. We at-
tribute this to the favorable divisibility of 216 with

respect o e syto the s mmetries of these surfaces. Among the
high-symmetry structures seven-membered rings were
sometimes all paired [Fig. 1(a),). row 1 Table I], some-
times all isolated [Fig. 1(b); row 2, Table I], and some-
times bot paire anb h d d isolated. Thus adjacent seven-
membered rings are feasible in these structures, unli e
adjacent five-membered rings in fullerences.

922

A d surface having genus 12 per superce 'g.ell (Fi .ran om
Three2) was used to generate a series of structures. ree

d'ff rent numbers of carbons (848, 1248, and 1648 were
tried, each with three different ring annealing schedu
Four runs, eac on ah different random surface create
with the same Ising-model parameters, showed sizab e
variation in bulk modulus (36% range) but little variation
in stability (8% range) and radial distribution function.
As shown in Table I, the random structures are similar in

stability to crystalline schwarzites. Though the ran om

structures contain isolated regions o 'g~ ~

i h curvature, the
overall energy estimate is still reliable due to the small
extent of these regions. The cubic shear modulus C44 o
the random schwarzites is similar to that of the crysta-
line sc warzi es. eh 't . Sh ar in both sorts of structures main y
involves sheet bending rather than bond compression. n

st the bulk modulus of the random structure is re-

duced; compression is obtained main y t roug
bending with little bond compression, due to the random

It is interesting to compare the ran om sc wom schwarzite
models with amorphous carbon (a-C) films having nearly
100% sp bonding. Films were grown under a vacuum o
10 Torr by electron beam heating of a graphite target,
pro ucing an ad

'
lrnost pure sp form of carbon commonly

known as thermally evaporated amorphous carbon. e
films were prepared by a NaC1 substrate heated to
300 C and Aoated onto electron microscope grids in dis-
tilled water. Energy-filtered electron diffraction patterns
were obtained at the Sydney University electron micro-
scope unit wi ath Phillips EM430 transmission electron
microscope fitted with a GATAN parallel electron energy
loss spectrometer [18]. Care was taken to work only with
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TABLE I. Bulk properties of various forms of carbon. Density is denoted by p, energy per
atom relative to a graphite monolayer by h,E, bulk modulus by 8, and cubic shear modulus by
C44. The first three rows are for structures shown in Figs. 1 and 2. All rows except the last two
are for theoretical structures whose properties have been calculated using the energy estimate
of Ref. [5].

Structure

Schwarzite P 216 [Fig. 1(a)]
Schwarzite D 216 [Fig. 1(b)]
Schwarzite 1248 (Fig. 2)
Schwarzite G 216
Schwarzite P 216 (Ref. [5])
Schwarzite P 192 (Ref. [4])
Schwarzite D 216 (Ref. [5])
Schwarzite D 168 (Ref. [3])
fcc C60 (Refs. [16,17]1
Diamond

P
(gem 3)

1.11
1.16
1.26
1.18
1.02
1.16
1.15
1.28
1.71
3.52

h,E
(eV)

0.17
0.16
0.23
0.17
0.20
0.19
0.18
0.22
0.42
0.02

B
(M bar)

1.01
1.07
0.49
1.09
0.75
1.03
0.94
1.15
0.14
4.43

(Mbar)

0.19
0.16
0.14
0.18
0.15
0.17
0.16
0.20

5.76

2s g + sin2xsrmn

N m 2n (m 2Ksrmn
(2)

where r~„is the distance between atoms m and n. The
P(s) was computed for the same range of s as in the ex-
perimental data and processed in the same manner as the
experimental data. This introduces the same instrumen-
tal broadening into the theoretical G(r) as is present in

films thinner than 200 A and a beam voltage of 300 keV
so that multiple scattering was negligible. Fourier sine
transformation of the reduced diffraction intensity p(s)

s[1(s)/Nf (s) 1] yields t—he reduced density function
G(r) 4nr[p(r) —p„,], as discussed in earlier papers
[19]. Here 1(s) is the energy-filtered diffraction intensi-

ty, f(s) the atomic scattering factor, p(r) the average
density of distance r from an atom center, and p,„,the
density averaged over the complete specimen. The
scattering vector s 2sine/X was sampled out to s,

„

-3.5 A-'.
The a-C film was found to have an average bond length

of 1.422~0.008 A and an average bond angle of 119.8
+'0. 1 deg. From the energy loss spectrum the plasmon

peak energy was found to be 23 eV. The bulk density
then estimated from the free electron relationship was 1.9
g/cm . This figure places an upper bound on the bulk
density since no signal will be obtained from regions con-
taining voids larger than a characteristic plasmon wave-

length of about 5 A [20]. For instance, the measured
plasmon peak of 25 eV in a C6o thin film would suggest a
density of 2.2 g/cm compared to the true density 1.71
g/cm3. A similar a-C with a density of 2.0 g/cm as
determined by flotation methods has a plasmon energy of
24~0.5 eV which would imply a density of 2.1 ~0.1

g/cm' [121.
As shown in Fig. 3, the agreement between the G(r)

for the a-C film and the random schwarzite is quite good.
The G(r) for the model structure was calculated using
the Debye formula:

the experimental one. The agreement between theory

and experiment for the first and second peaks is to be ex-

pected due to the similar bond lengths, bond angles, and

coordination numbers in the two structures. The region

between the second and third peaks contains distances

characteristic of five-, six-, seven-, and eight-membered

rings, while the region of the third peak contains dis-

tances between adjacent rings. Agreement beyond this

point indicates similarities in sheet curvature. The ran-

dom model with 1248 carbons was found to fit best in this

long-range regime. One discrepancy between theory and

experiment is the somewhat lower density of the random

schwarzite. While G(r) is not very sensitive to dif-

ferences in density, the different slopes at small angles

in I(s) (Fig. 4) suggest that the two materials have

different macroscopic densities. The random schwarzite

is a very porous structure, with no instances of parallel

stacked sheets. One possibility is that the a-C is very

similar in structure but contains sufficient regions of dou-

bled sheets to increase the density. Since the dominant

contribution would still be from in-plane distances, the

overall shape of G(r) would not be substantially changed.
This cannot be ruled out by our experiments.

I I I I

random sehwarzite
---- a-C by sublimation
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FIG. 3. Plot of reduced radial distribution function for
thermally evaporated amorphous carbon and the same data
computed for the random schwarzite shown in Fig. 2. The os-

cillation in the experimental curve below 1 A is an artifact.
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random schwarzite
------ a-C by sublimation

cation. W'e also acknowledge helpful discussions with R.
Phillips and Joel Shore. This work was supported by a
DOE Computational Science Graduate Fellowship
(S.J.T.), the NSF (T.J.L.), an IBM Faculty Develop-
ment Award (C.S.N. ), the David and Lucille Packard
Foundation (V.E.), and the Cornell Materials Science
Center.

0.2 0.4 0.6 0.8
S ( 1 !.4 }

FIG. 4. Diffracted electron intensity vs s=(2sint))/X for
thermally evaporated amorphous carbon, glassy amorphous car-
bon, and the random schwarzite shown in Fig. 2, where 8 is the
scattering angle measured from the beam direction and A. is the
wavelength. The intensity is plotted on a logarithmic scale
making the vertical placement of the curves arbitrary. The
curves are shown separated for clarity.

A comparison of the small-angle region of the calculat-
ed and experimental diffraction patterns, Fig. 4, shows a
wide range of small-angle scattering corresponding to
large-scale structure. The (0002) reflection correspond-
ing to the 3.3-A. interlayer distance in graphite is very
weak for our a-C. This suggests that if there is double
sheeting in the actual structure at all, the registration be-
tween sheets is poor, as one would expect for highly
curved sheets with many non-six-membered rings. For
comparison, the diffraction pattern of a glassy carbon is
shown. This has a very pronounced (0002) reflection as
expected for its turbostratic structure [14].

The stability of our random models suggests that a
mechanism capable of producing crystalline order might
not be necessary for the formation of schwarzite. The
seeming abundance of stable structures among the possi-
ble arrangements of carbon in sheets adds to the plausi-
bility of the formation of such solids. Moreover, the close
match between the reduced radial distribution function of
amorphous carbon grown by sublimation and our random
schwarzites may indicate that random schwarzite-like
materials have already been produced. Perhaps some re-
lated set of experimental conditions could produce more
ordered versions of these materials.

Experiments were performed at the University of Syd-
ney under the guidance of D. R. McKenzie and D. J. H.
Cockayne. We are also indebted to Qing Sheng, H. Ter-
rones, and A. Mackay for providing representations of
minimal surfaces. We thank C. T. Chan for discussing
his energetics calculations and model prior to their publi-
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