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Orientational Order in Simple Dipolar Liquid-Crystal Models
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The orientational order in simple systems of dipolar hard-core molecules is determined by Monte Car-
lo simulations. Dipolar hard spherocylinders are shown to form a monolayer smectic-A phase with unpo-

larized layers. In the columnar phase of dipolar cut spheres, evidence is given for a transition, with in-

creasing dipole moment, from a phase with unpolarized columns to a phase with completely polarized
columns arranged with antiferroelectric order. Ferroelectric orientational order is demonstrated for
strong dipolar hard spheres.

PACS numbers: 61.30.Gd, 61.20.Ja, 61.25.Em, 64.70.Md

Although the precise role of the dipole-dipole interac-
tion on the onset and stabilization of mesophases is not
fully understood there is a vast amount [1] of experimen-
tal evidence that compounds with strongly polar head

groups exhibit unusual properties which distinguish them
from the more conventional liquid crystals, such as, for
example, bilayer or partially bilayer smectic-A (S~)
phases [2], reentrant phenomena [3], and Sq-Sq transi-
tions [4]. The most straightforward way to investigate
the importance of the dipolar interaction on the struc-
tures of mesophases would be to compare the properties
of these phases with and without molecular permanent di-

pole moments. Obviously, such experiments are not pos-
sible with real molecules but are easily realized by com-

puter simulations. It is the purpose of this Letter to report
the variations of the structural arrangement of meso-

phases of hard-core elongated or oblate molecules due to
the presence of a dipolar interaction. The phase dia-
grams of two species of such hard-core molecules, sphero-
cylinders and disklike particles (the so-called cut
spheres), have been determined by Frenkel and co-
workers [5-7] and the results of these studies can be used

as a starting point for our simulations. Specifically, we

have made simulations of the smectic phase of sphero-
cylinders with a decentralized longitudinal dipole moment
and of the columnar phase of cut-sphere molecules with

dipole moment along the symmetry axis or perpendicular
to it. Also we have realized calculations for hard spheres
with a very large dipole moment.

Most calculations were performed for a system of N
molecules with periodic boundary conditions in a noncu-
bic orthorhombic simulation cell with side lengths

L„,L~,L, and volume V=L„L~L, to accommodate easily
an appropriate number of smectic layers or columnar
rows. The dipolar interactions superimposed on the
hard-core interactions were taken into account by the
Ewald summation procedure as described in the work of
de Leeuw, Perram, and Smith [8]. For the discussion of
our results it is essential to remark that the total internal
Ewald energy is composed of the sum of periodic pair po-
tentials between the molecules and a term proportional to
M, the square of the total electric dipole moment of the

system. Generally this last term is phenomenologically
combined with the reaction field of a continuous dielectric
medium of dielectric constant e' supposed to surround the
(infinitely) large sphere filled with the periodic replica of
the basic simulation cell. The resulting contribution to
the total Ewald energy is 2nM /(2e''+1) V. For unpolar-
ized phases [M -O(N)] this contribution to the energy,
although essential for a faithful estimate of the dielectric
constant of the system [8], is marginal. However, for po-
larized phases [M -O(N )] it may contribute in a
significant manner to the internal energy and thus to the
structural and orientational arrangements of the mole-
cules.

In our simulations the orientational order and the pos-
sible polarization of the mesophases were characterized

by two order parameters S and P; the former is the aver-

age value of the largest eigenvalue of the second-order
rank tensor

N
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(u; is the unit vector along the symmetry axis of the mol-

ecule), and the latter, P, the average value of

N
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where e is the instantaneous eigenvector (normalized to
unity) corresponding to the largest eigenvalue of Q.

Spherocylinders —We conside. r a system of sphero-
cylinders of total length l L/D+1=6 (L is the length
of the cylindrical part of the molecule, and D its diame-
ter) with longitudinal dipole moment located at a dis-
tance 2 5D off the molecular center. The initial
configuration of the system was generated from a close-
packed structure with hexagonal symmetry within the
layers parallel to the x-y plane and ACMIC. . . stacking
sequence of the planes along the z direction. The number
of layers in the x, y, and z directions was N„=8, N~ =8,
and N, =6. Initially all dipole moments were aligned in

the same direction parallel to the z axis. In the sampling
of configuration space, allowance was made, besides

1992 The American Physical Society



VOLUME 69, NUMBER 6 PH YSICAL REVI E% LETTERS 10 AUGUST 1992

2.0 -'
! S5O ~

0.0
l

0.0
2.0 —,,

4.0 8.0 12.0 16.0 20.0
25.0--

15.0

0.0 4.0 8.0 12.0 'l6.0 20.0
I
i
I

5.0
I

2.0 e'

0.0
0.0 4.0 8.0 12.0 16.0 20.0

2.0 6.0 l0.0

FIG. 1. Density modulation of the smectic-3 phase of dipo-
lar spherocylinders as given by the correlation function (3).
Full line: density of the centers of mass; dotted line: density of
the polar heads. (a) @*=2,(b) p* =42, (c) p* =0.

FIG. 2. Snapshot of a configuration of 384 dipolar sphero-

cylinders with p* =J6 in the smectic-A phase (projection of all

the molecules on the x-z plane of the periodic box). The
spherocylinders are represented by a thin line of length L and

the solid dot indicates the location of the dipole moment.

translation and rotation, for Aips of the molecular long
axis in order to generate polarized as well as unpolarized
configurations.

The Monte Carlo (MC) calculations were performed
in the isothermal-isobaric ensemble at pressure I'*
=PD /k T =3.8 and the reduced dipole moment p*
= (p /D kT) 'i was varied from 0 to J6. The density of
the system was p* =pD -0.13 for all values of p*.

Smectic and polar ordering along the direction perpen-
dicular to the smectic planes (here the z axis) can be con-
veniently analyzed by the following correlation functions:

(Pj~-on(jdz)n((i+ j)Az))
mp ~xyhz

where n(z) is the number of particles having the z coordi-
nate of their center of mass or polar head in the interval
(z,z+hz), m =L,/hz, S„» =L„L», p* is the average den-

sity of the system, and h,z =0.02D.
Figure 1 shows how the density waves of the centers of

mass and polar heads evolve with increasing dipole mo-
ment. Both functions oscillate with the same period indi-
cating monolayer structure with interlayer spacing slight-
ly larger than the molecular length. However, whereas
for p* =0 the density modulation of the centers of mass
is much sharper than that of the polar heads, the situa-
tion reverses with increasing dipole moment due to the
sharper localization of the polar heads as a result of the
strong interaction between them.

Figure 2 provides a snapshot of the smectic layering for
the dipole moment p* =&6 and p* =0.125. It clearly

shows an unpolarized monolayer arrangement. Some in-

terpenetration of the polar heads is observed which allows
the system to lower its internal energy. For example, the
energy (per particle) of a configuration of spherocylinders
with centers fixed in ideal smectic planes separated by a

distance d-1.05l is 5.3 whereas the average energy per
particle of the thermodynamic state considered in Fig. 2

is —2.04.
Cut spheres. —The second system investigated is the

columnar phase of disklike molecules modeled by cut
spheres of thickness L/D =0.1 (a cut sphere is obtained

by chopping oA' from a sphere of diameter D two caps
symmetrically disposed with respect to an equatorial
plane) with dipole moment either along the symmetry
axis of the disk or perpendicular to it. The simulations
were started oA from a typical perfect close-packed
configuration of a columnar phase with hexagonal sym-

metry within the layers parallel to the x-y plane and cut
spheres sitting on top of each other along the z direction
(columnar axis). There were 32 columns each compris-
ing 18 cut spheres. The system was then expanded to a
density well inside the columnar phase region identified

by Frenkel at p* =0 [6,7]. The initial orientation of the
dipoles was as follows: All dipole moments within a
column had the same orientation; columns having their
axes in planes parallel to the x-z plane had identical po-
larization but columns within successive planes were

given opposite polarization. Configuration space was

sampled by implementing the following types of MC
moves: (i) translation and rotation of the disk; (ii) IIip of
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the dipole moment of an individual disk; and, when

columns had a net polarization, (iii) flips of all the di-

poles inside a column chosen at random; (iv) simultane-
ous flips of all the dipoles inside two columns chosen at
random.

The MC calculations (isothermal-isobaric ensemble,
50000 moves/particle after equilibrium) at pressure
Pvp/kT =7.4 (vo is the volume of a cut sphere) give evi-

dence for a transition, at p*=0.125, from a phase with

unpolarized columns at low dipole moments to a state in

which each column is completely polarized, the total po-
larization of the system being zero (note that the total
number of columns is even). This result contrasts with

the conclusions of Ref. [9]. Each column is surrounded

by approximately the same number of "up" and "down"
columns but no well-defined pattern could be detected.
The effect of the phase transition on the longitudinal
dielectric constant eII is shown in Fig. 3. eII passes
through a maximum near p =0.125, then drops rapidly
to 1 with increasing dipole moment.

For cut spheres with dipole perpendicular to the sym-

metry axis orientational order was characterized along
columns by the average value of the scalar product p; pj
of the dipole moments as a function of separation of two
molecules in the same column. Well-defined orientation-
al order is found over distances -0.5D corresponding to
a succession of domains of size (2-3)L in which the di-

poles alternatively point roughly in opposite directions.
Hard spheres. —Recent molecular-dynamics simula-

tions [10] have shown that for sufficiently high dipole mo-

ments, dipolar soft spheres (1/r' short-range potential)
exhibit an orientationally ordered phase having ferroelec-

tric character. The present MC calculations extend these
results to dipolar hard spheres and, in essence, confirm
the results. For instance, at density p* =pD =0.84 (D is
the hard-sphere diameter) and dipole moment IM* =(p /
D kT) '~ =3 we find, for a 500-particle system, an orien-
tationally ordered phase with order parameters S=0.65
and P-0.85. However, dipolar ordering occurs already
at the smaller dipole moment IIi*=2.5. For this dipole
moment we studied the density range p* =0.8-1.2 cover-
ing the liquid to solid regions. Starting from a completely
disoriented fcc-crystal configuration we generally equili-
brated the system for more than 100000 moves/
particle. Orientational order then took about 100000
moves/particle to build up. Nematic ferroelectric phases
are obtained at p =0.8 with order parameters S=0.4
and P-0.7 and at p =0.86 where the order parameters
are 0.5 and 0.8, respectively. At higher density, p =1.0,
we observe formation of a columnar phase with columnar
axis parallel to the y axis and square lattice in the plane
perpendicular to the columnar axis (cf. Fig. 4). The pref-
erential orientation of the dipoles is parallel to the x-y
plane along a direction making an angle of 40' with the x
axis. At p* =1.2 the fcc crystal remained stable over a
period of more than 200000 moves/particle and de-
veloped ferroelectric orientational order with order pa-
rameters S =0.5 and P-0.7.

All the results presented up to here pertain to a period-
ic system with conducting boundary which suppresses the
depolarization field (case e' = ee, cf. introductory re-
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FIG. 3. Variation with dipole moment strength of the longi-
tudinal dielectric constant e[[ of dipolar cut spheres in the
columnar phase. The solid line is drawn as a guide to the eye.

FIG. 4. Snapshot of a configuration of dipolar hard spheres
with dipole moment p* =2.5 and density p* =1.0 in the colum-
nar phase (projection of all the dipolar spheres on the y-z plane
of the periodic box). The dipoles are represented by the projec-
tions on the y-z plane of thin lines of length 0.6D having their
middles on the centers of the spheres. The open circle indicates
the direction of the dipole moment.
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marks). If, instead, a large spherical part of the periodic
replica of the basic simulation cell is surrounded by vacu-
um (case e'= I), the large depolarization field is expected
to discourage any polarization eA'ect. In fact, with this
boundary condition, the net polarization of the system
was found to be zero for all cases considered. At p* =0.8
the system breaks up into two polarized domains with an-
tiparallel directions in complete similarity with the
dipolar-soft-sphere behavior [10]. At p* =1.0 the colum-
nar phase melts and the system breaks up into polarized
subdomains similar to the previous case. At p* =1.2, the
solid phase remains stable but the parallel orientational
order of the dipoles breaks up into a rather complex ar-
rangement which for the present system of 500 particles
is formed of four subdomains. A detailed description of
this arrangement and a full account of the work described
in this Letter will be given in a forthcoming paper.
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