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We present a method which allows calculation of whole universal finite-size-scaling functions from
Monte Carlo data. The crux of the new method is a technique of isolating the singular part from the to-
tal free energy. We apply this method to the 3-state Potts model on a square lattice and find the nor-
malized scaling function ¥(x) in the form 1+x+5.31x2—1.2x3—0.67x* . . near the bulk critical point
x =0, together with the normalizing universal amplitude E£=1.053 and a nonuniversal metric factor
D=—0.387. It also behaves as Y(x) = (% x)?Q + for large x in agreement with the hyperuniversality

hypothesis with Q+/Q - = 1.
PACS numbers: 05.50.+q, 64.60.Fr, 75.10.Hk

Computer simulations on statistical mechanical prob-
lems are inherently restricted to systems of finite size, in
spite of recent development of enormously high-speed and
large-capacity computers. On the other hand, to study
problems like phase transitions and critical phenomena,
one clearly needs to consider systems of finite size. For-
tunately, the recent progress of finite-size-scaling theory
[1,2] allows one to infer infinite size or bulk properties
from the properties of relatively small-size systems even
at the critical point. So far, however, no computer simu-
lations have been efficient or accurate enough to deter-
mine the behavior of the universal scaling functions.

In this paper we present a Monte Carlo (MC) tech-
nique by which one can calculate universal finite-size-
scaling functions and thereby predict thermodynamic
functions appropriate to the bulk system. The method is
successfully applied to the calculation of the universal
scaling function of the 3-state Potts model on a square
lattice. Aside from verifying the hyperuniversality hy-
pothesis we obtain the whole universal function and its
derivatives up to the fourth order. We also find that our
results are in good agreement with available exact
theoretical results.

According to the two-scaling-factor universality hy-
pothesis put forward by Privman and Fisher [1], the
free-energy density f consists of the analytic part f, and
the singular part f5, i.e.,

S=fat/fs. (m
The singular part behaves as
fit;L) =L ~EY(DtL'") | ©))

where L is the side of d-dimensional cube (in some arbi-
trary unit of length scale), ¢ is the thermal scaling field,
1/v is the corresponding critical exponent, and the nor-
malized scaling function Y is believed to be universal
within a universality class of given geometry. In this pa-
per we will consider only the zero-field case. The above
scaling form contains the hyperscaling relation, 2—a
=dv. Following the suggestion of Fisher [3], we will
determine the amplitude E and the nonuniversal metric

factor D by imposing the normalization condition
Y(0) =1 and Y'(0) =1. It should be noted that for two-
dimensional systems under toroidal boundary conditions,
the normalization constant E is related to the logarithm
of the modular covariant partition functions [4,5].

Since the free energy of a finite system is analytic, the
scaling function Y is also analytic. Only asymptotic be-
haviors such as Y (x) = (* x)?'Q +, for x— =+ o, even-
tually lead to two * amplitudes in the z-scaled form as
fi(t;00) =~ ED?Q + |t]|*~¢.

In order to illustrate the new method, let us take as an
example the g-state Potts model in the absence of an
external field. The energy of the Potts model with the in-
teraction strength J can be written as

6’({0',-})=‘—J(Z)5(o,~,oj) , 3)
ij

where the spin variable o; at the ith lattice site can take q
values (0, ...,g—1), and §(o;,0;) is the usual Kroneck-
er delta function.

We define the free energy by

-
S =Ll Y a(&expl—K(&/ND} |, (4)
Vo |66

where K=J/kgT with the temperature T and Boltzmann
constant kg, V=L is the volume of the isotropic d-
dimensional system, and Q(&) denotes the number of
configurations at fixed energy &.

Thermodynamic functions of interest are all calculable
from the free-energy density (4) by taking appropriate
derivatives, and they are cumulants of the canonically
weighted distribution function,

®(6)=0a(6)exp{—K(6/1)}/Z, (5)

where Z=exp(Vf) is the partition function.
We denote the nth order cumulant by Iy, i.e.,
of__ 9
"  a(—K)"
with To=f. As we know from elementary statistical
mechanics, I'; is the internal energy density while I, is

=TI, (6)
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proportional to the specific heat. We define the tempera-
ture scaling field by 1 =K. —K instead of usual |T/T.
—1/| so as to make entailing expressions simpler. The
scaled temperature variable x then can be written as

x=DiL"". M

Now all cumulants can be expressed as sums of two
parts, namely, the analytic and the singular parts,

=T+l , (®)

where the singular parts are related to the universal scal-
ing function Y and its higher-order derivatives. If we can
neglect corrections to scaling, we have

o =L ~4+"/vEDry ™ (x) . 9

In this point of view, the calculation of ¥ (=Y ©) and
its derivatives Y™ (=9"Y/8x") reduces to the calcula-
tion of ®(&), in Eq. (5), which in turn reduces to the cal-
culation of Q(&). The efficient and accurate algorithm
developed recently [6,7] allows us to calculate (&) and
consequently ®(&) and the I',’s accurately. However, we
have total I',’s in the K or ¢ variable while we need the
singular part of the I';’s in the scaled variable x, and it is
not a straightforward matter to separate the singular part
from the analytic part of the I',’s.

The separation of the singular part of the free energy
can be done by the following scheme.

We first calculate the analytic part of the free energy
fa- To do this we expand both f, and f; in ¢ and x
variables, respectively:  f;=X,=0ant"/n! and f;
=) ,=0csx"/n!. From Egs. (6), (8), and (9), we have
the relation

T(KeL) =a,+L " 9*"YED"c, , (10)

among the expansion coefficients a and ¢. Therefore we
can estimate a pair of numbers (a,,ED"c,) for each n,
from a set of bulk critical values I', (K ;L) for different
sizes L, for example, using the y? fit method in Eq. (10).
Although both expansions have a common origin about
which the Taylor series are made, the radii of conver-
gence are expected to be different for large L. Further-
more, since we expect that the analytic part of the free
energy is smooth and slowly varying near the bulk critical
point and L independent, we can assume that the first few
terms of the Taylor series are good enough for represent-
ing the analytic part of the free energy of a moderate-
sized system in the scaling regime. On the other hand,
the scaling regime, the range of x on which the scaling
function Y contains information about the bulk system,
consists of a narrow range of ¢ variable as L becomes
large, which can be seen in Eq. (7). For these reasons we
may take the analytic part f, and its derivatives fim) or
Iy, as the Taylor series approximation and its derivatives.
Then by subtracting them from the total cumulant I',, we
can isolate I, the singular part of the cumulant. Final-
ly, multiplying Tns(x) by L~"YE ~'D ™" we obtain a

10

series of functions for each n, LY~ "YE 7'D "', (x),
which should collapse into ¥ ™ (x), the nth derivative of
the scaling function, for all L.

In the above scheme, corrections to scaling may be-
come important in estimating a,’s for n = 3 and for large
L. Although it is possible to include the corrections to
scaling in Eq. (10) we neglected the effect in the follow-
ing analysis since the statistical uncertainties in I,
(n=3) are so large and there are not enough data points
(of different sizes L) available. In any case they are
significant only for large values of L while the a,’s for
n = 3 become less significant in estimating I'n, as L grows
large for the reason stated in the previous paragraph.

We have performed MC calculations on the 3-state
Potts model on a square lattice with periodic boundary
conditions, of sizes L XL =3/x3/, with [=23,...,11.
In measuring Q(6), we have used the algorithm
developed in Ref. [6]. Although we can determine from
our MC data the critical temperature and the exponent v,
we have used the known exact values [8], K.”!'=0.99497
and v=%. These two numbers and the finite-size-scaling
form in Eq. (2) are the only inputs in obtaining the fol-
lowing output from our MC data for Q(&).

The I[,’s are calculated from the moments of energy
(6™ which can be evaluated from Q (&) directly. In Fig.
1 we plot the total cumulant I', versus the temperature
K ~'. The vertical line in the middle represents the criti-
cal temperature K,~!. We have defined the scaling func-
tions on a range of x € [1.94, —1.94], and the vertical
ticks of growing height mark the corresponding range in ¢
for growing L. Only curves for L = 15 are shown in this

Y2
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FIG. 1. Cumulants I', vs temperature K ~!. The ordinates
(y1,y2) are (—0.9,3.1), (—1.9,0.1), (—6.5,6.5), (—300,300),
and (—32000,32000) for n=0, 1, 2, 3, and 4, respectively.
The horizontal line in the middle marks the midpoint between
yiand y,.
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figure and in Fig. 2.

Using total cumulant values at the critical point, we
obtain 2.0700(1), —1.577(1), —1.40(5), 3.1(5), and
21(6) for a, (n=0,...,4) and 1.053(7), —0.408(7),
1.68(2), 0.45(1), and —0.38(2) for ED", (n=0,...,
4). Together with the normalization condition co=1.0
and ¢y =1.0, these results in turn yield E =1.053(7) and
D= —0.387(4). In fact, ap and a, are critical values of
the free energy and of the internal energy, known exactly:
2.0701... and —1.5774. . ., respectively [8]. Comparison
of our data with these values would give a general idea
about the accuracy of this analysis. The conformal field
theory also predicts the exact value of E in this case. It is
given by E=InZ(1)=1.0479..., where InZ(8) is the
modular invariant partition function (including the cen-
tral charge factor) of the 3-state Potts model with aspect
ratio & [4,5]. This value also falls within the error bound
of our estimate.

A short curve tangent to I'g and another crossing I'; in
Fig. 1 are their analytic parts found by the above
analysis. It should be noted that the analytic part I'y, is
not tangent to I'y although I'j,(K.) should converge to
I1(K.). This behavior is a natural consequence of the
fact that 2 —dv > 0 and has important implications in es-
timating amplitudes Q + as we shall see shortly.

In Fig. 2 we plot L4~ "*T',,(x) for n=0, . ..,4, each
of which should collapse into a single curve ED"Y ™ (x)
for all L. We can see by inspection that on the low-
temperature side this size is good enough for representing
asymptotes of scaling functions, although we may need a

Y2
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FIG. 2. L4 "'T,(x) vs x for system sizes L=15,18, ...,
33. They are supposed to collapse into ED"Y ™. The ordinates
(1,y2) are (0,40), (—17.88,6.12), (—0.61,1.83), (—1.35,
1.35), and (—1.3,1.3) for n=0, 1, 2, 3, and 4, respectively.
The horizontal line in the middle marks the midpoint between
Yi and ya.

little larger size to calculate the true asymptote of
ED"Y™ for all n, except possibly EDY"W, on the high-
temperature side. Two short curves tangent to EY and
EDY" are their Taylor series approximations calculated
above. The vertical lines near both sides mark the
asymptotic region used for the log-log plot in Fig. 3.

In Fig. 3 we plot In(]Y®™]) vs In(Jx|) in the region
marked in Fig. 2 so as to see whether the Y ™5 behave as
predicted by the hyperuniversality hypothesis, namely,
YP(x) =0 P (£x)9 " for large x. Here the Qs

are related to each other recursively via Q$+')

=(dv—n)Q (4_’—'). For this plot we have taken, for the scal-
ing function and its derivatives Y("), L4—n/vg —lp—n
XTns(x) with the largest L, i.e.,, 33. In particular the
low-temperature asymptotes of Y™ for all n as well as
the high-temperature asymptotes for n=1 and 2 are
shown. The ordinates for In(|Y ™|) are shifted for each
n to absorb the multiplicative factors so that all asymp-
totes are made to converge to the two points, i.c.,
In(Q +)+ 3 In(| ¥1.94|) for n=0. The short solid lines
display the predicted slope (3 —n). Although the Q +’s
from different n’s except n =1 and 2 are somewhat scat-
tered, the slopes follow the predicted exponents rarely
nicely even for n=4. Ticks on the right axis mark the po-
sitions 5% above and below the expected convergence
point of the high-temperature asymptotes. Our values of
Q+=5.19(3) and Q - =5.13(3) are calculated from the
asymptotic behavior of Y™ since it displays the best
asymptotic behavior in this plot. The ratio Q+/Q—
=1.01(3) is 1% off from the exact value of unity which is
a consequence of the self-duality [9].

The reason that only y® gives accurate asymptotic
behavior can be understood as follows: First, since we
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FIG. 3. In(JY"™|) vs In(|x|). The ordinates (y1,y2) are
(3.97,4.94), (2.88,3.83), (0.86,1.82), (—1.85,—0.89), and
(—3.17,—2.21) for n=0, 1, 2, 3, and 4, respectively.
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have taken only finite terms in the Taylor expansion of
the analytic part of the free energy, the higher-order
derivatives of the analytic part have even fewer terms so
that they cannot represent the analytic part for the large
x region correctly. Second, for higher-order cumulants,
statistical uncertainty grows, and precision drops accord-
ingly. In fact, in our data, the average relative standard
deviation for sets of I, are 10 ™4, 1073, 1072, 10!, and
2.5%10 ! for n=0-4, respectively (see Ref. [6]). Then
why is Y™ better than Y? Since the analytic part of ¥
eventually falls to the total free-energy density in the lim-
it of large L (see Fig. 1), the difference between the total
free energy and the analytic part for large L becomes
very small and is eventually drowned in the statistical er-
ror. On the other hand, I'; —I';, remains finite for all
nonzero ¢ (not x) even in the limit of large L as we noted
previously, without much loss of accuracy in the Taylor
series representation of I'y,.

It should be mentioned that the histogram technique
recently developed by Ferrenberg and Swendsen [10,11]
can also be used in the present method for the direct cal-
culation of Y™ for n=> 1 since the histogram yields the
unnormalized distribution function ®(&), in Eq. (5).

In conclusion, we have not only verified consequences
of the hyperuniversality hypothesis in every detail with
reasonable precision but also obtained the whole scaling
function and its derivatives. One can even go further to
try some closed-form expression for Y(x) such as
a(x2+5)% [c +tanh(dx)] +e for a starter, which exhib-
its all the characteristics found in this analysis. In any
case our analysis suggests that combining the finite-size-
scaling theory and a high-precision MC technique such as
this in effect can solve statistical mechanical problems of
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bulk systems which exhibit critical phenomena.
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