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Feynman-Kac Path-Integral Calculation of the Ground-State Energies of Atoms
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Since its introduction in 1950, the Feynman-Kac path-integral approach has received limited use in

spite of its simplicity in solving the quantum many-body problem. This paper provides a procedure to in-

clude permutation symmetries for identical particles in the Feynman-Kac method. It demonstrates that
this formulation is ideally suited for massively parallel computers. This new method is used for the first

time to calculate energies of the ground state of H, He, Li, Be, and B, and also the first excited state of
He.

PACS numbers: 31.15.+q, 02.50.+s, 02.70.+d, 05.30.Fk

In spite of its many successes, the original Feynman
path-integral formalism [I] suffers from lack of mathe-
matical rigor in the definition of the path integral itself.
In fact, Carneron's theorem states that a finite (real or
complex) Lebesque measure for the path integral defined

by Feynman does not exist [21, so other measures are re-

quired. The difliculty in implementing Feynman's
method is evidenced by the fact that the path-integral
solution for the hydrogen atom was achieved only recent-

ly [3]. One justification of the Feynman approach may
be given in terms of the Wiener measure of a path in-

tegral [41. This was first recognized by Kac, and reported
in a famous but rarely cited paper [5] which provided a

mathematically rigorous path-integral approach to quan-
tum mechanics. The Wiener measure is a well-defined

probability measure on the space of continuous functions
and may be used to justify Feynman's path integral as an

analytic continuation to imaginary time of a Wiener path
integral. The Feynman-Kac (FK) method is well known

among mathematicians and mathematical physicists
[2,4,6], and is mathematically rigorous and relatively
simple to implement. Surprisingly, it has been ignored
almost completely for the last forty years as a computa-
tional technique. Numerical work with the procedure
employing modern computers has not been reported for
even the simplest systems during the forty years since the
original work.

The purpose of this paper is to provide a simple method
of treating permutation symmetries of systems of identi-
cal particles within the Kac method and to demonstrate
that the FK formalism provides the basis for very simple
and accurate calculations of ground-state properties
of many-particle systems. Although a generalized FK
method has been developed [7], it introduces considerable
complexity through importance sampling distributions,
and requires the fixed-node approximation. The first cal-
culations using the original Feynman-Kac path-integral
formulation are reported here for the atoms H, He, Li,
Be, and B.

Kac's theory is developed as follows. For a given Ham-
iltonian, H= —hj2+ V(x), consider the following ini-

tial-value problem:

8U(t, x) = [-, ~ —V(x)]U(t, x),

with x 6 R and U(0, x) = l.
This may be viewed as the time-dependent Schrodinger

equation for purely imaginary time, or simply as an equa-
tion defining the function U(t, x) with a convenient auxi-

liary variable, t, which will be used in a limiting pro-
cedure to determine the eigenvalues of the time-inde-

pendent Schrodinger equation for H. Here —6/2 is the
kinetic energy operator for the quantum system including
all particles (e.g. , nuclei and electrons). In the Born-
Oppenheimer approximation (infinitely massive nuclei) it

is replaced by the kinetic energy for N electrons, in which

case the dimension of the space is d =3N in Eq. (1). The
celebrated Kac formula [5], derived with restrictions
upon allowed potentials, gives the solution of Eq. (1) in

terms of a Wiener path integral and may be written

1
t t

A, i
= lim ——ln E exp — V(x+8(s))ds

t —~ 4 p
(3)

Many years after this equation was obtained Donsker and
Varadhan [8] used large-deviation results to prove that it
is equivalent to

fO

Xi = —inf „,V(x)p (x)dx+ —g, (&q (x),Vp(x))dx

(4)
where p is Lebesque square integrable, p c L (R ) and

~~p~~t~=l. Here "inf' indicates the minimum value for

U(t, x) =Eexp — V(x+8(s))ds (2)

where 8(s) is the d-dimensional Brownian motion such
that 8(0) =0, and E is the expected (average) value of
the exponential term (see Ref. [4]). With restrictions on

V(x) and considering one-dimensional motion, Kac ob-
tained a mathematically rigorous result for the lowest ei-
genvalue of the Hamiltonian which may be written as a
limit of a functional of Brownian motion as follows:
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any function p in this class and &, ) is the dot product in

R . Generalizations of the class of potential functions for
which Eqs. (2)-(4) hold were given by Simon [6] and in-

clude most physically interesting potentials (positive or
negative, with 1/x singularities allowed). Equation (4) is

a statement that the Raleigh-Ritz variational formula is

recovered by averaging the contributions of the potential
V(x) on the Brownian-motion path up to the time t, for
large t. Restrictions on allo~ed trajectories of Brownian
motion must be imposed, as discussed below, to get an en-

ergy for a state of the desired symmetry.
Extension of Eq. (3) to an arbitrary number of dimen-

sions was implied by Kac [5], and has been given rigorous
mathematical justification by Korzeniowski [9], who also
used it to solve the classical heat equation and the
Schrodinger equation for the hydrogen molecule [10]. In

numerical implementation of Eq. (3) the 3N-dimensional
Brownian motion is replaced by 3N independent, properly
scaled one-dimensional random walks on a discrete grid.
Generating Ã„„ independent replications Z],Zq, . . . ,

Zg, , of

fir

Z~ =exp ——g V(x+ W (l) )
n I=]

(5)

and using the law of large numbers, (Z~+Zz
+ Zrv, )/N „~= Z(t ), gives an approximation to
U(t, x) in Eq. (2) which combined with (3) gives

k) ————lnZ(r) .
1

l'
(6)

Here W™"(I),m =1,2, . . . , N„~, denotes the mth realiza-
tion of W(l), out of N«~ independently run simulations,
where W(l) is the lth step in a discrete random-walk ap-
proximation to 8(s) in 3N dimensions. For large t and

N„& this approximation approaches the energy given by
(3), and forms the basis of a computational scheme for
the lowest energy of a system of many particles with a
prescribed symmetry. In actual practice a modified ver-
sion is employed to improve convergence [5]:

1 Z(r2)
ln

r ( Z(1))
(7)

where i ~
and t2 are sulciently large and diAerent times.

The symmetries required for a purely spatial represen-
tation of the many-body wave function for a Hamiltonian
which is independent of spin are best described by the
Young's diagram of the desired number of fermions and
total spin [11]. The procedure employed here is based
upon the following considerations.

(i) To generalize Eqs. (2), (3), and (4) to states of a
particular permutation symmetry the Brownian motion
must be confined to an appropriate region of R . In this
case an indicator function, 1~,D&,I, should multiply the
exponential functions in (2) and (3), where D &R, and

is the first (random) time when the motion hits the

surface containing D. Before such time the function is 1

and after, if the event occurs, it is zero. In Eq. (4) the
corresponding integration is then taken over the region D.

(ii) According to a result due to Ray [12] a solution to
Eq. (3) which satisfies the condition a=0 on the bound-

ary of D will be found by eliminating all paths which hit
the boundary of D by time t according to the procedure
of (i).

(iii) For two particles (N=2) the subset D of R" is

defined by

D=[(xi,) l ~1 x2) 2Z2)lxi+) i+~i-x2 .i2 ~2&0]

In this case the boundary is defined by the hyperplane
equation x]+y]+z] —x2 —

y2
—z2=0. Note that this is

a five-dimensional surface as it must be [71, but it is
diA'erent from the one discussed in [13].

(iv) Permutation antisymmetric functions may be ob-
tained by discarding paths crossing the permutation hy-

perplane for any pair of permutation antisymmetric vari-
ables in the Young's diagram. Restrictions are not re-

quired for variables in the Young's diagram which are
permutation symmetric.

(v) Steps (i)-(iv) guarantee that the lowest-energy
solution will be found with a given Young s diagram. To
find other states with the same diagram requires a projec-
tion method or knowledge of the additional zeros of the
excited state [7].

The present method is ideally suited for massively
parallel computers since sampling over many paths may
be done in parallel. The approximation to Brownian
motion employs an integer grid which allows control of
statistically insignificant trajectories and reduces the nu-

merical error associated with the commonly used Gauss-
ian distribution approximations [10]. The FK method
was coded in FORTRAN 90 and executed on the Connec-
tion Machine model CM-2. A parallel trial consisted of
8192 Wiener path integrals running simultaneously, with

the average over paths done at the end. Within each seg-
ment 3N processors were used for each trial, one proces-
sor for each coordinate of each of the N electrons in the
system. The 3N & 8192 processors were all assigned
separate random-number generators, which were used to
create independent paths for all coordinates. A lagged-
Fibonacci pseudo-random-number generator [14] with a

period of 5.3 x 10 ' values provided the approximate
Brownian-motion distribution W(l) of Eq. (5). The step
size Ax =1/scale= I/Jn in atomic units was made uni-

form in space for each atom. Here the integer n is the to-
tal number of time steps. The parameter scale was

chosen to give comparable accuracy for the first five

atoms of the periodic table (from 30 for H to 75 for B),
but the resulting ground-state energies have not been ex-
trapolated to Ax =0 at this time. The Brownian motion
times ranged from 4 to 20 atomic units of time in Eq. (7),
and the number of paths sampled was increased with the
number of electrons per atom (from 64K for H to 256K
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TABLE I. Atomic energies (minus signs omitted) for H, He, Li, Be, and B. Energies are re-

ported in hartrees. Numbers in parentheses are estimated statistical errors. Exact values are
estimates for the nonrelativistic Hamiltonian in the Born-Oppenheimer approximation. Experi-
mental values are the sum of the ionization energies. VQMC and QMC are the results of elab-
orate variational Monte Carlo and quantum Monte Carlo calculations, respectively.

HF'
Kac
Exact
Expt. '
VQMC a

QMC'

H

0.5000
0.496 (6)
0.5000
0.4996

He

2.8617
2.906(5)
2.9037
2.8990
2.9036( I )
2.9038 (1)

Li

7.4327
7.472(9)
7.4781
7.4760
7.4768 (3)
7.4781 (2)

Be

14.5730
14.659(9)
14.6673
14.6644
14.6370(6)
14.6655 (7)

24.5291
24.640 (9)
24.6539
24.6485
24.6156(6)

'Reference [15].
bReference [16].
'Reference [17].

aReference [18].
'Reference [19].

for B). CPU times on the CM-2 ranged from 0.5 min for
H to 23 min for B.

Ground-state energies for the first five atoms of the
periodic table computed with the FK path-integral ap-
proach within the Born-Oppenheimer approximation are
shown in Table I. Included in the table are Hartree-Fock
(HF) [15], Kac, "exact," and experimental values for the
ground-state energies of the atoms H, He, Li, Be, and B.
The exact values are estimates made by Clementi and
Veillard [16] for the nonrelativistic Hamiltonian neglect-
ing nuclear motion. Estimated statistical errors for the
last digit are shown in parentheses in Table I. Experi-
mental values were obtained by adding up the ionization
energies of each atom [17]. Also shown in Table I are
large-basis-set variational and variational quantum
Monte Carlo (VQMC) calculations [18] and other quan-
tum Monte Carlo (QMC) results [19]. Since the original
Kac method had not been applied to atoms, the main pur-
pose of this paper was to test the Kac procedure. This
was done for atoms in Table I using short computer runs.
These rather brief runs already provide an accuracy of
several millihartrees or a fraction of an eV/atom. By in-

creasing the number of paths to 10, the ground-state en-

ergy of He was found to be —2.90382(17) hartrees, in

close agreement with the exact value and QMC results
[19]. Using 400000 paths the first excited state of He
was found to be —2. 1771(28), which compares well with

the recent calculation of Zhang and Kalos, —2. 1752(13)
hartrees, and the exact result of —2. 175229 hartrees
[20]. More complete results for atoms, including excited
states will be presented in another paper.

Evidence obtained in this study convinces the authors
that the Feynman-Kac method can provide accurate
ground-state energies for atoms. Contrary to other
methods, no trial functions were needed at this point.
The method is also easy to implement, even when includ-
ing the permutation symmetries for fermion systems. The
"sign problem" addressed in several recent Letters
[20,21] is trivially solved here [a one line statement in the

computer code verifying the condition described in (ii)
above]. The present method is free of the usual complex-
ities of quantum chemistry such as multideterminental
wave functions (and their associated integrals and gra-
dients) and requires, in effect, only the ability to toss a
coin and add or subtract. The FORTRAN 90 parallel com-
puter code consists of about 125 statements and can be
employed also for molecules, with or without the Born-
Oppenheimer approximation. The path integrals all con-
sist of identical sets of operations which can be performed
in parallel for diAerent paths in almost identical times.
This makes the parallel algorithms very efficient. As
massively parallel computers become more massive and

more available, this path-integral approach will become
not only more accurate than other many-body methods,
but also more efficient, especially when accurate results
are needed for larger systems.
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