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Using the Bethe ansatz equation the mass gap of the chiral SU(n) XSU(n) model is calculated in

terms of the A parameter in the modified minimal subtraction scheme. The result is in reasonable agree-
ment with recent Monte Carlo data.
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In a recent paper Hasenbusch and Meyer [1] have

presented high-quality data on the mass gap of the
SU(3)XSU(3) chiral sigma model and of the CP(3)
model in two dimensions regularized on the lattice. Their
motivation for this study was to test the efficiency of the
multigrid Monte Carlo algorithm to overcome critical
slowing down in models for which efficient cluster algo-
rithms have so far not been devised.

The SU(n) XSU(n) and CP(n) models have extremely
interesting properties akin to those of non-Abelian gauge
theories. The chiral model has in the framework of Mig-
dal recursion relations [2] the same renormalization-

group trajectories as pure gauge theories in four dimen-

sions; and the CP(n) models have instanton solutions.
Both are asymptotically free and thought to have a
dynamically generated mass gap.

Both models have an infinite number of conservation
laws at the classical level. These survive quantization for
the chiral model but are spoiled by quantum anomalies in

the CP(n) model [3]. The presence of an infinite number
of conservation laws, implying the absence of particle
production, enables the determination of the S matrix up
to so-called Castillejo-Dalitz-Dyson (CDD) factors [4].
If one fixes these and makes some extra mild assumptions
one can then determine the ratio of the mass gap to the A

(P I tt I Pl Is 2 tz2 P2 out IP i, tran, Pi,P2 tz2 P2 tn)

parameter in these class of models as was first done by
Hasenfratz, Maggiore, and Niedermayer [8,9] for the
O(N) sigma model. In this paper we extend this compu-
tation for the principal chiral model and compare the re-
sults with the data of Ref. [1] referred to above.

The action of the SU(n) & SU(n) chiral model is

S 2
dx tr[t)„U(x) |)„Ut(x)],

where UE SU(n). The action is invariant under both
left- and right-handed global SU(n) transformations

U(x) VLU(x) and U(x) U(x) VR with correspond-

ing conserved Noether currents

J„(x)=U(x) t)„Ut(x),

J„(x)=U*(x) t)„U (x).
(2)

The lowest massive particle states are thought to be-

long to the fundamental representation (n, n) and to the

conjugate representation (their antiparticles). The S ma-

trix has been independently proposed by Wiegmann [10]
and by Abdalla, Abdalla, and Lima-Santos [11]. It has

SU(n) x SU(n) symmetry and the scattering of two parti-
cles in the fundamental representation is described by

+(ai-a2 pl p2 pl p2) .
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Here the momenta are expressed in terms of their mass m

and rapidity according to p; =m(cosh8;, sinh8;); and
8=8~ —8z is the relative rapidity. Furthermore P+ and
P are projections onto the symmetric and the antisym-
metric channels, respectively, and

x =8/2n; 6-I/n. (4)

The particle-antiparticle 5 matrix, which has the proper-
ty of absence of reAection, will not be needed here. The
amplitude S(8) in the completely symmetric channel is
given by

I
The full S matrix can be considered as the direct product
of chiral Gross-Neveu S matrices times a CDD factor
[10]

( )
sinhtr(x+ia)
sinhtr(x —ia) '

with a=6,. This factor leads to a pole on the physical
sheet in the antisymmetric channel, which through
"fusion" induces a whole tower of bound states with

masses

S(8)=- r'(I+ tx) r(~ —tx) r(1 —~ —tx)
1 z(1 ix)r(I), +ix)r(1—a+ix)— sinrxh

m, =m . , 1 ~r ~n —1.
sin@6,

(7)
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The bound states of r particles transform as totally an-
tisymmetric tensors of rank r. Note that states with
r =k ) n/2 have the same mass as states with r =n —k,
which corresponds to the picture [12] that antiparticles of
the kth state can be considered as bound states of n —k
particles. The presence of bound states is consistent with
the picture that the model is equivalent to a model of fer-
mions whose interaction is attractive [6].

Finally we note the fascinating property, stressed in

Ref. [11], that the S matrix has a simple expansion in

powers of 1/n. On the other hand, although a systematic
expansion of matrix models is in principle given by the to-
pological expansion [13], even the lowest order, the pla-
nar graphs, has not been solved explicitly.

The procedure now is to calculate the free energy in

the presence of a large chemical potential h coupled to a
Noether charge Q [8] of the SU(n) &&SU(n) symmetry.
The charge should be chosen appropriately, the optimal
choice being that the coupling of a chemical potential to
it favors the presence of just one particle with the highest
value of the charge in the ground state. This is possible
for the chiral model if we chose Q =QL+ Q~ with QL and

Qg acting on the fundamental multiplet with the same
matrix, i.e. , QL(a, P) =q, (a,P), QR(a, P) =qp~a, P), with a

special choice q =q:

q =diag( 2 U ci . ~ ~, p), (8)

j2~kecd(h)=—f(h) —f(0) = — k ln —+ln
m G (i)

where v = —1/(2n —2). Note we have normalized the
charges such that the largest eigenvalue of Q is l. Only
one particle of the fundamental multiplet corresponding
to r =1 in Eq. (7) has eigenvalue +1 and all other states
have eigenvalues strictly less than 1 (since the bound
states belong to completely antisymmetric representa-
tions). Based on our experience with the SU(n) chiral

Using the fact that the two-particle wave function van-
ishes for equal momenta [i.e. , S(0) = —

1 as holds in our
case (5)], one can give convincing arguments that for
theories with a factorizable S matrix this equation holds
in the thermodynamic limit (L ~, P/L =p =const) for
any density [15], and thereby obtain an integral equation
for the density p(e).

It is then a small step to derive the integral equation
for the free energy (see, e.g. , Ref. [9]), which involves as
its kernel K(0) the derivative of the scattering phase
shift. This equation can be solved using the generalized
Wiener-Hopf method, briefly summarized in Refs. [8,16]
(see also the appendix of Ref. [17]). Here we just state
the result for a class of models which includes the non-
linear cr model and the principal chiral model. Writing
the Fourier transform K of the integral kernel as
1
—K(co) =1/G+(co)G —(co), where G+(co) [G -(co)]

are analytic in the upper [lower] half plane, in these mod-
els G~(ig) for small values of ( has an expansion of the
form [18]

G+ (ig) = e '~'"~(1 —bg+ ) . (io)

The dependence of the free energy density f(h) on h for
h »m is, up to terms vanishing in the limit h/m
given in terms of G+(i) and the parameters k, a, b ap-
pearing in (10) through

h—1+a(ye —1+ln8)+ (a+ 2 )ln ln —+
m

Gross-Neveu model [14] we expect that for this special
choice of the charge the state with the minimal energy
will consist only of the Q =+ 1 particles.

For a finite system of P identical bosons the discrete al-
lowed momenta in a periodic box of size L are determined

by the basic set of equations

(9)

For the principal chiral model one gets

a =0, b =d 1nh+ (1 —h)ln(1 —6),
1k=

42n~(I -~)
and

—b
t

G+(i) r(I+~)r(2 —~)

(i 2)

(i3)

(i4)

The calculations done for the nonlinear sigma model [8]
already fix the coefficients in Eq. (11). In Ref. [8], how-

ever, some of the corresponding numbers have been ob-
tained numerically (to a precision 10 ). The computa-
tion can be simplified further by methods developed by
one of us [19], and all the coefficients can be obtained
analytically.

Next we turn to the perturbative computation of the

D„U =1)„U—h6„p(q&U+ UqR),

D„U =B„Ut+h6„p(Utqg. +qgUt) .

(i 6)

To perform the standard perturbative computation in

the bare coupling, we regularize the theory using dimen-
sional regularization. The computation just involves a
one-loop calculation which parallels that in the nonlinear
sigma model and hence will not be repeated here. Con-
sider now instead of q a more general charge with Qc

free energy. The Euclidean action for a chemical poten-
tial h coupled to a charge Q is

S =
2

dxtr[D„U(x)D„Ut(x)], (i5)

where g is the bare coupling and the "covariant deriva-
tive" D is given by
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and Qn acting on the U's with the same matrix q =diag(q l, q2, . . . , q„) with Pq; =0. As in Eq. (8), the largest eigen-
value is normalized to 2. ql = —,

' ) ~q2~ ) ) ~q„~, but otherwise qz, . . . ,q„are arbitrary. The free energy has a
perturbative expansion in the running renormalized coupling g(h) in the modified minimal subtraction (MS) scheme of
the form

4h hbf(h) =—, Pqj' — g (q; —
q, )' [In(q; —

q, ~

——,
' ]+0(g ). (17)

g2(h) ) 2n ()J.

The explicit h dependence is obtained by expressing the running coupling in terms of the A parameter through the rela-
tion:

=Ppln(h/AMs)+ In in(h/AMs)+0
g2(h) Pp ln h AMs

Here pp and pl are the universal one- and two-loop beta-
function coeIIicients of the principal chiral model [20] We have also investigated the question how the addi-

tion of CDD factors of the form (6) modifies our result.
First we note that such factors with 0 & a & —,

' introduce
extra poles in the physical strip and therefore change the
spectrum of the model. In particular, we would neces-
sarily have bound states also in the symmetric channel.
If we want to keep the spectrum unchanged, we can only
use CDD factors with —

—,
' & a &0. By computing the

modified kernel we find, however, that the presence of
such factors changes the thermodynamics of the model
drastically and the obtained free energy contradicts the
perturbative result. Presence of bound states in the sym-
metric channel probably leads to a similar disagreement
because they would have larger charge/mass ratio.
Therefore we conclude that additional CDD factors are
very unlikely.

The standard lattice action for the principal chiral
model is [1,21]

g'(h) = —Ppg'(h) —P,g'(h)—

I I8' '
12gn'A'

(20)

By comparing the leading terms in the two expressions
(11) and (17) one observes that the perturbative free en-

ergy is in general lower than that obtained from the in-

tegral equation. This follows from the relation Pjql.) q ~ n/(n —I ), where the equality holds only when q =q.
This means that the ground state is in general a mixture
of particles. On the other hand, it supports our working
hypothesis that for q =q only the Q =+ I particles ap-
pear. Taking q=q one sees that the lnlnh terms also
match since the relation

I =0+ 2 (»)
p2

holds. We would like again to express our opinion that it
is a nontrivial fact that the S matrix in conjunction with
the integral equation reproduces the universal part of the
per
in

we

S = —
2 pgtr[U(x)Ut(x+p) —I]+H.c. , (23)

sinzh,
A-

MS

Z, p

One obtains

turbative beta function. This fact has been observed where p=2/gp.
all models considered so far. The ratio of the lattice A parameter to that of the MS
Comparing the remaining terms in Eqs. (11) and (17) scheme can be obtained in various ways, e.g. , by comput-
obtain the desired result: ing the lattice two-point function and comparing it with

~/2 that obtained using dimensional regularization [20]. An

(22) even simpler way is to calculate the free energy bf(h)
with lattice regularization, the correct form of the action
is in this case being [221

S= —
2 Pgtr[U(x)e "Ut(x+p)e " +Ut(x)e "U(x+p)e " —2]. (24)

~MS Pl 2=J32exp
AL 2'

(25)

the SU(3) &&SU(3) model (which agreed with previous
studies [23] for small correlation lengths) showed for b
the ratio of the mass to the two-loop A parameter,

which also follows from the result of Kogut and Shigem-
itsu [21] using AMs=Apy. Note also the agreement of
the results (22) and (25) for the model with n =2 with
those of the O(N) sigma model for N =4 as they should
since the models are equivalent in this case.

The published data by Hasenbusch and Meyer [1] on

( p) (26)
a steep rise to a maximum at correlation length —10 and
then a steady fall. Recently they [24] have extended
their previous data in two ways. First they have repeated
the point at p=2. 1 for lattice size 512 to study possible
finite-size eAects. The new data give a -5% larger
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TABLE I. Values for m/AMs for various n

m/AMs

1.935 77
2.51463
2.737 59
3.04069

12.4071
19.1940
22.3609
27.2122

24.0172
48.2659
61.2149
82.7439

' On leave from Central Research Institute for Physics, Bu-
dapest, Hungary.

b On leave from the Theoretical Physics Department,
Eotvos University, Budapest, Hungary.
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