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Grand Unification, Gravitational Waves, and the Cosmic Microwave Background Anisotropy
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We reexamine the stochastic gravitational wave background resulting from inflation and its effect on
the cosmic microwave background radiation (CMBR). Measurement by the Cosmic Background Ex-
plorer satellite of a CMBR quadrupole anisotropy places an upper limit on the vacuum energy during
inflation of = 5X10' GeV. Gravitational waves from inflation could produce the entire observed signal
if the vacuum energy during inflation was as small as 1.5X10' GeV at the 95% confidence level. This
coincides with recent estimates of grand unification scales inferred from renormalization-group argu-
ments, for supersymmetric grand unified theories. Further tests of this possibility are examined.
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The observation by the differential microwave radiome-
ters aboard the Cosmic Background Explorer (COBE)
satellite of large-scale anisotropies in the cosmic mi-

crowave background radiation (CMBR) [1] is probably
the most important discovery in cosmology since the
discovery of the CMBR itself [2]. Such anisotropies can-
not have been induced by causal processes which were in-

itiated after the era of recombination and thus represent
true primordial fluctuations resulting from physics associ-
ated with the initial conditions of the Friedman-
Robertson-Walker cosmology. These initial conditions
are likely to have resulted from processes associated with

either an inflationary phase or new Planck-scale physics.
Only in the former case can explicit predictions be made
and the COBE data on the temperature correlation func-
tion are remarkably consistent with a flat Harrison-
Zel'dovich spectrum as predicted from inflation. (It
should be noted of course that the COBE results do not
unambiguously prove inflation. )

Inflation predicts at least two sources of CMBR aniso-
tropies. Scalar energy density fluctuations on the surface
of last scattering induced by primordial (dark) rnatter
density perturbations will, depending on the shape of the
inflation potential, result both in subsequent structure
formation and in appropriate dipole and higher moment
anisotropies in the CMBR [3]. Based on the observed di-
pole asymmetry one can determine an upper limit on the
expected quadrupole anisotropy in the case of a fiat spec-
trurn. In addition, if the scale of inflation is sufficiently

high, long-wavelength gravitational waves will be gen-
erated during inflation whose reentry into the horizon can
result in a large-scale observed quadrupole and higher
multipole anisotropies in the CMBR today [4]. Inflation
is not the only method of generating such a background
of waves [5], but it is the most well motivated.

Here we reexamine gravitational wave generation dur-
ing inflation, determine the predicted signal in the
CMBR, and compare this with the COBE data. Our de-
tailed estimates update and reconcile various earlier anal-
yses. We present a likelihood function for the probability
that inflation at a given scale would result in a quadru-
pole anisotropy at least as big as that which is observed
(and also compare this to the predicted quadrupole an-

(2)

isotropy from scalar density perturbations). We thus

place limits on the range of scales for which gravitational
waves from inflation could result in all or most of the ob-
served quadrupole anisotropy. These scales are consistent
with the scale at which the SU(3) &SU(2) &U(1) gauge
couplings can be unified, based on a renormalization-

group extrapolation of low-energy data, for various grand
unified theory (GUT) models. We find this coincidence
both suggestive and exciting, and consider other observa-
tional probes by calculating the energy density stored in a
stochastic gravitational wave background today.

Since the work of Starobinsky [6], it has been recog-
nized that a period of exponential expansion in the early
Universe would lead to the production of gravitational
waves. Rubakov and collaborators [7] used this to limit
the scale of inflation and with it the scale of GUTs. Since
that time analyses designed to more accurately compute
gravitational wave backgrounds and compare limits and
predictions have been developed [8-12]. More recently
the limits on the quadrupole anisotropy of the microwave
background had improved. It thus seemed, even before
COBE, a good time to reanalyze the gravitational wave
limits. Many of the analytic techniques and results we
derive have appeared scattered in the literature, but we

have made some effort to check, unify, and reconcile the
previous methods and in the process correct any errors.
Further details can be found in [13].

It is convenient to write the metric in the k =0
Robertson-Walker form

ds =R (r)( dr +dx )— (1)
where dr =dt/R(t) is the conformal time. In a universe
which undergoes a period of exponential inflation, fol-
lowed by a radiation dominated epoch and then a matter
dominated phase, R(r) and R(r) can be matched at the
transition points, assuming that the transitions between
phases are sudden (see also [14]). We define r

~ to be the
(conformal) time of radiation-matter equality, and r2 to
be the end of inflation. The Hubble constant during
inflation H and vacuum energy density Vo driving the
inflation are related by

H 8~ Vo 8~
N1 )V s

nzp~
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(4)

where we introduce the notation v = I'o/mpi.
A classical gravitational wave in the linearized theory

is a ripple on the background space-time

g„„=R'(z )(r(„,+h„,), (3)
q„,=diag( —1, 1,1, 1), h„,« 1 .

In transverse traceless (TT) gauge the two independent
polarization states of the wave are denoted as +, x. In
the linear theory the TT metric fluctuations are gauge in-
variant. We write

h„„(z,x) =h (z;k)e'"'"e„,(k;l),
where e&„(k;X,) is the polarization tensor and A, =+, x.
The equation for the amplitude hi, (z;k) is obtained by re-

quiring the perturbed metric (3) to satisfy Einstein's
equations to O(h). As was first noted by Grishchuk [15]
the equation of motion for this amplitude is then identical
to the massless Klein-Gordon equation for a plane wave

in the background space-time. In this way, one finds each
polarization state of the wave behaves as a massless,
minimally coupled, real scalar field, with a normalization
factor of 416(rG relating the two.

The spectrum of gravitational waves generated by
quantum fluctuations during the infiationary period can
be derived by a sequence of transformations relating
creation and annihilation operators defined in the various
phases: infiationary, radiation, and matter dominated
[12,14]. The key idea is that for long-wavelength modes
the transitions between the phases are sudden and the
Universe will remain in the quantum state it occupied be-

fore the transition (valid for all but the highest-frequency
modes). However, the creation and annihilation opera-
tors that describe the particles in the state are related by
a Bogoliubov transformation, so the quantum expectation
value of any string of fields is changed. A calculation of
the quantum n-point functions suffices to find the spec-
trum of classical gravitational waves today since the sta-
tistical average of the ensemble of classical waves can be
related to the corresponding quantum average.

A stochastic spectrum of classical gravitational waves

(in terms of comoving wave number k) in the expanding

Universe has the form

3ji(l z)
hi(z;k) =A(k)ai(k)

kT:
~ —+, X (s)

0 8W'(k) =
Ã m

To make contact with observations one must consider
the eff'ect on the CMBR. If one expands the CMBR tem-
perature anisotropy in spherical harmonics

6T
(6,y) =pa(. V(. (e,y), (8)

Im

one can present the prediction of a given spectrum of
gravitational waves in terms of the aI ~ The temperature
fluctuation due to a gravitational wave h„, can be found
using the Sachs-Wolfe formula [16].

It is standard to project out a multipole and calculate
the symmetric quantity

(a()-=(ala, l').
After some algebra (i.e. , see [13]), one finds for waves
entering the horizon during the matter dominated era
(the results are insensitive to this restriction since the k
integral is dominated by waves with k = 2(z/zo)

(9)

{a )=36(z (2l+1) ' kdkA (k)!F((k)!
(t —2)!"

where the function F((k) is defined as [z (r) = zo —r]

(10)

where [ ] is a real solution of the Klein-Gordon equa-
tion in a matter dominated universe and ai(k) is a ran-
dom variable with statistical expectation value

{ai(k) ai, (q) ) =k 6 (k —q) 8U . (6)
Waves which are still well outside the horizon at the

time of matter-radiation equality (kz i «2(r) will give the
largest contribution to the CMBR anisotropy today. Cal-
culating Bogoliubov coefficients by matching the fields
and first derivatives at z2, zi in the limit kz «2(r one
derives the prediction for the spectrum of long-
wavelength gravitational ~aves generated by inflation
[4,13]

F, (k) =-„, j, (kz ) j( 2(kr ) 2j((kr) j(+2(kr)
dr + +

d (k z ) k z (2l —
1 ) (2l + 1 ) (2l —1)(2l + 3) (2l + 1 ) (2l + 3)

Accounting for the factor of 2 diff erence between
definitions of A (k) this agrees with the result of [10],
and differs by = 2 with the earlier result of [8].

The calculation of the expectation value (a( ) is not the
end of the story. One must also consider the statistical
properties of a( [8,13,17,18]. Since the a( are indepen-
dent Gaussian random variables the probability distribu-
tion for each a(, with mean &a(), is of a g' form. The
confidence levels for aI are given in terms of the incom-
plete gamma function. We find for the quadrupole,
(ap) =7.74U and a2/(a2) =0.63, 0.32, and 0.23 at the
68%, 90%, and 95% (lower) confidence levels, respective-

aq = (4.7 ~ 2) x 10 (12)

Note that the quoted error on Q, , ps is Gaussian, while
the distribution of a~ is g . This implies that in proceed-

The COBE observations can be summarized for our
purposes as a value for the rms quadrupole moment. If
one fits to a fiat spectrum the quoted value is [1]

]/2
a2

grms-PS
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ing from the inferred value of a2 to a value of U we must

be careful to properly take into account the resultant
statistics which will be far from Gaussian. In particular,
the mode of the distribution will be lower than the mean
(as is noted [1]). From (12) the quadrupole moment is

consistent with gravitational waves resulting from a mean
value of v =6.1x10 ". To determine the uncertainty on

v we have performed a simple Monte Carlo analysis to
find the distribution for v (see Fig. 1). Based on this we

can determine both upper and lower limits on the value of
v consistent with the observations and the most probable
value of U. We find

3.7x10 ' ) U ~ 2.5x10 ', 95% C.L. ,

1.5x10 & U ) 2.3x10, 68% C.L. ,

with a maximum likelihood value of v = 4&&10

These limits as quoted require some interpretation.
First the 95% upper limit v (3.7x10 ' provides a strict
upper limit on the scale of inflation = v' MP1=5.2
x10' GeV assuming that the contribution to the quad-
rupole moment from scalar density perturbations is

insignificant. One could scale these results linearly to ob-
tain values for v if the gravitational wave contribution to
a2 is not 100%, with some net contribution, or even

perhaps a partial shielding by a comparable quadrupole
moment from scalar fluctuations, for example.

In this regard it is worthwhile considering what magni-
tude of quadrupole moment is expected from scalar densi-

ty perturbations from inflation. By requiring that the in-

duced dipole due to long-wavelength modes not greatly
exceed the observed dipole anisotropy one can put an

upper limit on all higher multipoles (assuming a flat spec-
trum). At the 90% confidence level an upper limit of
a2 = 2 && 10 ' has been derived [11]. Equivalently,
fitting observed clustering to a primordial fluctuations
spectrum [18] one can predict a value of a2, with best fit
values in the range a2 = (1.9-9.9) x10 ". While these

a I

O
cps

E
0

CL

estimates are probably consistent with the COBE obser-
vation, they also suggest that a major fraction of the ob-

served anisotropy may be due to gravitational waves.

Comparison of COBE results with anisotropy measure-
ments on small scales will also be useful.

To what scale of inflation, M, in GeV, do the above
limits correspond? From (13) we find, at the 95%
confidence level, 1.5x10' (M (5.2x10' GeV, with

the best fit value 2.9x10' GeV. On the other hand, us-

ing data from precision electroweak measurements at
LEP on the strong- and weak-coupling constants one
finds, for minimal SU(5) supersymmetry (SUSY) models

with SUSY breaking between Mz and 1 TeV, that cou-

pling constant unification can occur at a GUT scale M~
in the range M~=(1-3.6)x10' GeV [19] or —10'
GeV in SO(10) models [20]. Unfortunately there are no

explicit coinpelling GUT inflationary scenarios with

which one can compare, but generically, unless there is

fine tuning, or hierarchies, in a GUT scenario Vo-—xM
where ir=0.01-1 [for example, in a Coleman-Weinberg
SU(5) model x =9/32m ]. Thus the energy scale of
inflation consistent with the observed quadrupole anisot-

ropy coming from gravitational waves can coincide with

the estimated GUT scale. We find this possibility both
plausible and exciting. At the very least it seems exciting
that COBE is sensitive to gravitational waves from
inflation at interesting scales (including those which may
be related to chaotic inflation [21]).

Since both density perturbations and gravitational
wave anisotropies resulting from inflation result in a flat

spectrum, with a great similarity in all CMBR multipoles

up to at least 1=9, it will be difficult from CMBR mea-

surements alone to verify whether or not the observed sig-
nal is due gravitational waves. How might one hope then
to distinguish between these possibilities? The simplest

way would be to probe for evidence of a flat spectrum of
gravitational waves at smaller wave numbers. At present,
the most sensitive gravitational wave detector at shorter
wavelengths (periods of —years) is also astrophysical in

origin, and is based on timing measurements of mil-

lisecond pulsars [22-24]. On still smaller wavelengths
terrestrial probes, such as the proposed LIGO gravity
wave detector [25], are envisaged.

The sensitivity of all such detectors is based on the
mean energy density per logarithmic frequency interval in

gravitational waves. For waves which come inside the
horizon during the matter dominated (MD) era we can
utilize (5) and (6). Averaging over many wavelengths/

periods, summing over helicities, and also taking the sto-
chastic average, we find

0 2 3 4

Vacuum Energy Density (v = V+[M 1] ) (x 10 )P

FIG. 1. The distribution for the scale of inflation U = Vo/Mp~
as determined by Monte Carlo simulation, using the COBE
measurements, and assuming the observed quadrupole anisotro-

py is due to gravitational waves.

2

dpg kpl, y, , 3jl (kr )
dk 2G kr

where k phys =k/R(r ). The time evolution

[3j|(kr)/kr] is crucial, and in fact implies that
ergy density in gravitational waves also redshifts
erably as it comes inside the horizon. Thus the

(14)

factor
the en-
consid-
energy
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density at horizon crossing is smaller than the asymptotic
value, a fact which has not been stressed before to our
knowledge. Dividing by the critical density today we find

[6v/9 =2/3tr(H;„s/I p)), RD,

/ '=3/8~'(H /M )' MD

The result at horizon crossing in a radiation dominated
(RD) epoch results from the factor of 3j~(kr)/kr above
being changed to jo(kr). Waves which come inside the
horizon during the radiation dominated era will redshift
with one extra power of R compared to matter during the
matter dominated era. Thus their contribution to f) to-
day will be suppressed compared to their contribution at
horizon crossing by the factor p„d/p„=4 X 10 h

where the Hubble constant today is 100h km/secMpc.
As a result, we find that such waves today, taking
v & 3.7x10 ', form a stochastic background with Qs
& 26X 10 ' h & 10 ' (h &05).

The waves for which the millisecond pulsar timing and
future interferometer measurements are sensitive entered
the horizon during the radiation dominated era. The
present limit, at the 68% confidence level, from pulsar
timing data is Qs & 9 x 10 [24]. This can improve in

principle as the measuring time to the fourth power
[22,23] but, even in the most optimistic case, observations
over a period of perhaps a century would be required to
uncover such a signal. The expected energy density is

also about 2 orders of magnitude below the optimum pro-
jected capabilities of future terrestrial detectors.

Thus, prospects look grim in the short term for detect-
ing such a gravitational wave background directly else-
where. Barring a very refined measurement of high mul-

tipoles in the CMBR anisotropy we may have to await
confirmation at accelerators, proton decay detectors, or
inferences from other CMBR and large-scale structure
measurements before we can say whether COBE has
discovered the first evidence for GUTs, supersymmetry,
or at the very least, gravitational waves.
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