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Moriya’s expression for the single-bond anisotropic superexchange interaction is shown to possess an
overlooked hidden symmetry, isomorphic to the symmetry of the isotropic case. For the unfrustrated
case, this symmetry results in a degeneracy of the macroscopic state, implying no unique value for the
Dzyaloshinsky weak ferromagnetic moment. A unique value emerges from superexchange only when
more than a single bond is considered and only as a result of frustration. This implies that the symmetric
part of the superexchange anisotropy tensor must vary among the bonds. The results are particularly
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relevant for the spin anisotropies in La;CuOs.

PACS numbers: 75.30.Et, 71.70.Ej, 75.30.Gw

More than thirty years ago Dzyaloshinsky [1] pointed
out that weak ferromagnetism of various mainly antifer-
romagnetic compounds can be explained by an antisym-
metric spin-spin interaction. He showed that the term
D?- (M, xM,), allowed in the thermodynamic potential
of a sufficiently low-symmetry crystal, favors a canted
spin arrangement over the antiferromagnetic one. Here
D? is the constant Dzyaloshinsky vector and M; and M,
denote the sublattice magnetizations. The microscopic
basis for the Dzyaloshinsky conjecture was given by
Moriya’s [2,3] extension of the Anderson theory [4,5] of
superexchange (or “kinetic exchange” [6]) to include
spin-orbit coupling. Moriya calculated the tensor de-
scribing anisotropic superexchange of two neighboring
spins S(R) and S(R') and showed that it contains an an-
tisymmetric part Dfr-- S(R)xS(R'). Moriya suggested
that this term represents the leading anisotropy, because
it is linear in the spin-orbit coupling while the symmetric
anisotropies are of second-order in that coupling. The
antisymmetric exchange has recently been observed in the
high-temperature  superconducting parent material
La,CuOy4 [7].

The aim of this Letter is to point out that the sym-
metric anisotropies cannot be neglected in comparison
with the antisymmetric ones. We show that the complete
expression [2,3] for the two-spin anisotropic superex-
change can be mapped via a gauge transformation, onto
the isotropic Anderson [4] Hamiltonian. As a result,
states with different ferromagnetic moments are shown to
be degenerate with the purely antiferromagnetic state.
Thus the anisotropy of the two-spin superexchange in-
teraction does not lift the degeneracy of the correspond-
ing ground state. Considering only the superexchange in-
teraction, the degeneracy is lifted only as a result of frus-
tration of this gauge transformation over the entire lat-
tice. This happens when the vectors Dﬁ"kr (Moriya vec-
tors below) vary from bond to bond in a nontrivial way.
Thus, frustration is a necessary condition for the aniso-
tropic superexchange interaction to explain an observable
weak ferromagnetism with some definite net ferromagnet-
ic moment. We also show that one of the principal axes
of the symmetric part of Moriya’s one-bond superex-

change anisotropy tensor is always parallel to the corre-
sponding Moriya vector. This yields the surprising result
that symmetric superexchange anisotropies vary from
bond to bond with the variation of the Moriya vectors.
Finally, we show how frustration yields weak ferromagne-
tism in La;CuQy.

Moriya derived his expression by extending Anderson’s
formalism [4] of superexchange interaction. He started
from the one-electron Hamiltonian

H =§, Y e(R)af(R)as(R)

+ 2 ZbR-RYa]R)a,(R)

+ Y Yal(R)IC(R—-R") olspars(R'), (n
R=R’ o0’

where b and C are the transfer integrals [3], a' and a are
the electron creation and annihilation operators, and o is
the vector of Pauli spin matrices. The first two terms in
Eq. (1) represent Anderson’s one-electron Hamiltonian
[4]. The third term, which is nondiagonal in spin space,
takes account of the spin-orbit interaction. Following
Anderson, Moriya used second-order perturbation calcu-
lations to derive his expression for the interaction be-
tween the spins at R and R’ [Egs. (2.3) and (2.4) in Ref.
(311,
E@k =JrrS(R)-S(R)+DfrS(R)xS(R")
+S(R)TrrS(R). 2
This expression was derived [2,3] under the assumption
that the ground state of each ion is nondegenerate except
for being a Kramer's doublet, and we will confine our
analysis below just to this spin-+ case. The coefficients
in (2) are given by [8]

Jrr =@/U)|b(R—-R)|?, (3a)

D¥r =2 [5(R—R)C(R—R)—b(R'—R)C(R —R"1,
L/

(3b)

FR,R'=%[C(R—R’)C(R’—R)+C(R'—R)C(R ~R")

—IC(R—R")-C(R'—R)], (3¢)

where U is the energy required to put two electrons on the
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same ion (the Hubbard energy). Equation (3b) defines
the Moriya vector. Equation (3c) gives the anisotropy
tensor T, I being the unit matrix. Note that Eq. (3a)
contains the numerical factor 4, which differs from the
factor 2 in Moriya’s Eq. (2.4a) [3].

Moriya argued that the order of magnitude of the vec-
tor DR r is (Ag/g)JRr R’ and that of the symmetric tensor
Trr is (Ag/g)*Jrr, where g is the gyromagnetic ratio
and Ag its deviation from the free electron value. There-
fore Dr' seems to be the leading-order anisotropy. It is
customary to assume (see, for example, Ref. [9]) that this
implies that in the classical ground-state spin con-
ﬁguratlon the spins are confined to the plane perpendicu-
lar to D The role of the symmetric anisotropy FR R’
is to choose a particular direction in that plane. We
would like to stress that although ?R_R', is indeed small, it
still plays as important a role as does D§/g-. The reason
is that in discussing the anisotropies one has to compare
not Dffr’ and Tr g’ but rather (D)2 and Jr g TR R-
Obviously, the latter are of the same order of magnitude.
Much more surprising is the fact that for the superex-
change interaction the values of the two corresponding
anisotropy parameters are exactly equal to one another.
To see this we note that for a specific bond C(R —R')
=[C(R'—R)]* and »(R—R')=[b(R'—R)1*, and in
the case of nondegenerate ground-state orbitals the
transfer integral b is real while C is purely imaginary [3].
It is now convenient to define

C(R-R)=id(R—R)|C(R=R)|=—-CR'-R), 4
so that d(R —R’) is a unit vector along the DA'g’ direc-

tion [see Eq. (3b)]. With these notations the energy (2)
takes the form

Eﬁ%{y=%(bZS(R)-S(R’)+2bC&-S(R)XS(R')

+cC2{2[d-S(R)1ld-S(R)]1—S(R)-S(R")}),
(5)

where for clarity we have put d(R—R’)=d, »(R
—R’')=b, and |C(R—R')|=C. It follows from Eq. (5)
that one of the principal axes of the tensor FR,R' is direct-
ed along the Dfr. Indeed [see Eq. (5)], the spin com-
ponents along the d direction do not couple to those per-
pendicular to d. It also follows that the corresponding
principal value is the largest, and that the two other
values are equal to one another and therefore cannot ac-
count for any anisotropy in the plane perpendicular to
DAr.. Moreover, expression (5) is just the scalar prod-
uct of two spins, S'(R) and S'(R’) obtained from the
original ones by rotations around the d axis with angles
— 6 and 0, respectively, where tan@=C/b. Hence the
energy is

Ek = {JRR

where

|DgRI?

Y ]S(R) S'(R"), (6)

S'(R) =(1 —cos8)[d- S(R)1d +cos8S(R)
—sin6S(R) xd ,

S'(R") =(1 —cos8)[d- S(R")1d +cos6S(R’)
+sin6S(R') xd..

Since (6) is invariant under rotations of all the S'(R)’s, it
follows that also the Hamiltonian (2) does not confine the
original spins S(R) to any particular direction and there-
fore it does not choose any particular ferromagnetic mo-
ment in the classical ground state. One can find in this
ground state configurations with a net magnetic moment
ranging continuously from zero (spins parallel to D/gr’)
up to *sin@ (spins perpendicular to D&r’). Note that
we have an unusual situation. The interaction is an-
isotropic— the vector D&r: does represent a special direc-
tion in the space of the original spins, identifying the spe-
cial case with no net ferromagnetic moment. This vector
also determines the local rotation, and therefore the sym-
metry of the states in the original spin variables. Howev-
er, this anisotropy does not lift the degeneracy of the
ground state— there is no energy of anisotropy. Clearly,
in order to map Eq. (2) onto Eq. (6) it is necessary to
take into account the tensor FR‘R', even though it is
second order in Ag/g and, last, but not least, to replace
the factor 2 in Moriya’s expression for Jrgr' by the
correct factor 4.

In the traditional approach, one first ignores the last
term in Eq. (2), and notes that D g plays two roles: It
generates a ferromagnetic moment perpendicular to D
and to the local staggered moment L=S(R)—S(R’),
and it contributes an anisotropy energy of order
|D# r'|2/J which prefers L to be perpendicular to D'g-.
One then switches on the symmetric anisotropy and that
chooses alternative orientations for L. The ferromagnetic
moment vanishes when the symmetric anisotropy prefers
LIIDﬁ’,R'. Our calculation, which includes only the su-
perexchange effects, shows that the last term in (2) ex-
actly cancels the above-mentioned anisotropy energy, so
that all the directions of L (and therefore also many
values of the ferromagnetic moment) have the same ener-
gy. Indeed, any additional anisotropy may pick a direc-
tion for L. As we show below, frustration picks this
direction even without additional anisotropies.

Quite naturally, the question arises as to whether the
disappearance of the anisotropic terms is accidental and
occurs only in second-order perturbation theory. To ex-
plore this possibility, we return to the one-bond part of
the one-electron Hamiltonian (1). For convenience, we
rewrite it in the form

Hrr=¢eR)Y al(R)a,(R)+eR)X al(R)a,(R")

@)

+Y al(R) (14 ) ppay(R) +He.,  (8)
oo
where 1, 6, and d depend upon R—R’, rcos6=b, and
tsin=C. From the form (8) it is clear that by perform-
ing a unitary transformation of the operators,
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a,(R)— 3,(R) =3 [e ~1@d ) 4 (R)

, ©)
a,(R')— a,(R") =Z [ei0/Dde] 4 (R"),

the one-bond Hamiltonian (8) is transformed into
Hrr=¢R)X aJ(R)A,(R)+eR)NX 4J(R)A,(R')

+X1lal(R)A(R)+4I (R4, (R, (10)

o
This is exactly the one-bond part of the Anderson Hamil-
tonian [4], from which one derives the isotropic superex-
change. Note that the spin-orbit coupling appears here
as a modification on the transfer integral: Instead of b
(the transfer integral in the absence of spin-orbit cou-
pling) there is now t=b/cosf (6=0 in the absence of
spin-orbit coupling). Note also the one-to-one correspon-
dence between the transformations described by Egs. (9)
and (7).

Thus we have shown that for one bond, the above map-
ping is correct to all orders in perturbation theory. We
stress that the possibility to transform Eq. (8) into Eq.
(10) does not depend on the explicit expressions in Eq.
(3) and, hence, confirms our claim about the factor 4 in
Eq. (3a). Note also that even in the case of charge-
transfer insulators, when one has to explicitly eliminate
electron degrees of freedom on the ligand ions, the
effective Hamiltonian for hopping between magnetic ions
has the form (8), allowing for the above mapping.

We turn next to the superexchange spin Hamiltonian
for the entire lattice. Let us point out that, while the
direction of the Dzyaloshinsky vector D? is determined
by the symmetry of the entire system [1], the direction of
the Moriya vector Dfr- is determined by the transfer in-
tegrals 5(R—R’) and C(R —R’) which to leading order
do not depend on the symmetry of the lattice as a whole
(but they do depend, of course, on the symmetry of the
particular bond [3]). The directions of the Moriya vec-
tors for different bonds on the lattice are related to each
other by the lattice symmetry [9,10]. A priori, these vec-
tors need not all be along the same direction, nor along
special lattice directions. The principal axes of the sym-
metric parts of the various one-bond anisotropy tensors
also need not be the same for all the bonds. Note that
the direction and the absolute value of the Moriya vector
for a specific bond determine the direction and the abso-
lute value of the rotation necessary to transform the cor-
responding one-bond part of the spin Hamiltonian to the
isotropic form [see Egs. (7) and (9)]. Clearly, if the
product of four such rotations around each square pla-
quette is equal to unity, then it is possible to transform
the total superexchange spin Hamiltonian to the isotropic
form, Eq. (6). The degeneracy of the corresponding
ground state is lifted only when the total transformation
is frustrated (the product of four rotations around the
plaquette is not equal to unity).
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Consider first the unfrustrated case, in which the rota-
tions of spins at all the sites are compatible with each
other. In this case, the complete Hamiltonian maps onto
a sum over the isotropic interactions of Eq. (6). For each
bond in the classical ground state S'(R) and S'(R") are
antiparallel and there is an infinite degeneracy for all the
possible directions of S'. However, not all directions are
equivalent. If the spins S'(R)=—S'(R") are along the
Moriya vector DAg: [which is parallel to d of Eq. (7)1,
then it follows from Eq. (7) that also S(R)=—S(R’),
and hence there is no net ferromagnetic moment. For all
other spin directions (which have the same energy), S(R)
is not antiparallel to S(R'), and a net ferromagnetic mo-
ment follows. However, this moment depends onkthe an-
gle between the spins and Dffr: [the terms Sxd in Eq.
(7)1 and is in practice determined by an anisotropy aris-
ing from other sources (e.g., direct exchange, dipolar in-
teractions, an external magnetic field, etc.). In fact, the
degeneracy is expected to yield a very strong sensitivity to
external fields, with diverging susceptibilities. It would
be very interesting to find materials which have such an
unfrustrated structure.

In the frustrated case, there exists no rotation of the
spins that will map the complete Hamiltonian onto an
isotropic one. Thus, frustration lifts the degeneracy of
the ground state. It breaks the symmetry and picks a
specific configuration, with a definite net ferromagnetic
moment, by minimizing the complete Hamiltonian.

For the two-sublattice case, the Moriya Hamiltonian
(2) is easily mapped onto the Dzyaloshinsky thermo-
dynamic potential

Q=JM,;-M,;+D? M, xM,+M,TM,. an
Here,
J=Jgr, I'= LZ‘FR,R’ (12a)
No T

are independent of the direction of the bonds (i.e., the
sign of R —R’), while [11]

DP=-Y D¥f, (12b)

No®R

where R and R’ belong to sublattices 1 and 2, respective-
ly, and Ny is the coordination number. It follows that the
degeneracy under rotations of M, and M, persists on the
macroscopic level only in the special case when all the
D#g' (for fixed R) are equal to each other, so that
D2=D{r. We next show that this is equivalent to the
absence of frustration. Consider the plaquette with the
sites 1 — 2— 3— 4— 1. The degeneracy implies that
[91 DM =DM = —DH and DY =D% = —D#. Therefore,
DX +D¥+DH+DM=0. Thus, the product of the rota-
tions in Eq. (9) around the plaquette is equal to unity and
there is no frustration.

Hence, one can identify D and D? only when all
the Moriya vectors have the same magnitude and alter-
nate in sign on successive bonds along each path on the



VOLUME 69, NUMBER 5

PHYSICAL REVIEW LETTERS

3 AUGUST 1992

lattice [“canonical Dzyaloshinsky-Moriya (DM) antifer-
romagnet”]. As we already noted, the corresponding
classical ground-state manifold cannot be characterized
by any definite net ferromagnetic moment, because these
moments differ for different states belonging to the mani-
fold. To break this hidden symmetry and to pick up some
configuration with a definite moment it is necessary to in-
troduce frustration. This happens only if one deviates
from the “canonical” case, so that the Moriya vectors are
not identical to the Dzyaloshinsky vector. Hence, a non-
trivial difference between the Dzyaloshinsky and the
Moriya vectors is a necessary condition for the anisotrop-
ic superexchange interaction to explain an observable
weak ferromagnetism with some specific value of the net
ferromagnetic moment.

However, this condition is not sufficient. A simple
counterexample arises when the Moriya vectors are all
equal to each other along the path encircling the basic
plaquette. In this case, Eq. (12b) yields D?=0, while
D#r'=0. A ferromagnetic moment arises only if D?=0.
Let us illustrate this point on a specific example [10] re-
lated to the magnetic properties of the CuO; planes in the
orthorhombic phase of La;CuQs. In this case, the sym-
metry of each bond is sufficiently low [3] to allow
DAr'#=0. At the same time, the symmetry of the crystal
structure is sufficiently high to imply that all the Moriya
vectors are of the same magnitude. Thus, it is sufficient
in this case to consider the frustration resulting from the
relative orientations of various Dﬁ’,k"s, avoiding the com-
plications connected with their magnitude. Each Cu-Cu
bond in the CuO, plane possesses a twofold symmetry
axis perpendicular to the plane. Since the corresponding
Moriya vector must be perpendicular to this axis [3], it
follows that all the Dg”’s are confined to the plane. The
general orientation of the Moriya vectors is a superposi-
tion of two unique cases in which all the D#g’s are
aligned along the same direction [9,10]: In case 1, the
D#/Rr’s are aligned along the orthorhombic 4 axis, and in
case 2, they are aligned along the orthorhombic € axis (in
the notation of Ref. [12]). In case 1 [9,10], all the Mori-
ya vectors alternate in sign on successive bonds along any
path. Thus it represents a ‘canonical” DM antifer-
romagnet. In contrast, in case 2 the Moriya vectors,
though alternating in sign along straight paths, have the
same sign along the path encircling the basic plaquette
[10,13]. In this case, Eq. (12b) yields D®=0 and the
spins order antiferromagnetically without any ferromag-
netic moment. Weak ferromagnetism originates only
when (i) the projections of the Moriya vectors on the 4
axis have the same (nonzero) magnitude and alternate
their sign from bond to bond, and (ii) these vectors also
have nonzero components along the ¢ axis, which do not
alternate in sign along the path encircling the basic pla-
quette. In a separate paper [10] we show that the one-
bond superexchange Moriya vectors are almost perpen-
dicular to the corresponding bonds, i.e., are directed nei-

ther along the € nor along the 4 axis. Only because of
this fact is it possible to explain [10] the observable weak
ferromagnetism of LayCuQOy4 on the basis of the theory of
superexchange interactions. The resulting mean-field
spin Hamiltonian is identical to the one used phenomeno-
logically by Thio et al. [7] to account for the peculiar
magnetic properties of La,CuQy, assuming that one takes
for the value of J% of Thio er al. the magnitude of the
projections of the Moriya vectors onto the a axis.

We emphasize that only the superexchange (or “kinetic
exchange” [6]) interaction has been considered. It is be-
lieved [3-5] that this interaction dominates exchange in
insulators. Other interactions (e.g., direct or “potential”
[6] exchange, dipole-dipole interactions) are not as sym-
metric as the superexchange and provide (along with the
frustration of the one-bond superexchange interaction)
another channel of lifting the degeneracy of the ground-
state spin configurations.
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