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Order from Disorder in a Kagome Antiferromagnet

3 AUuUS~ 1992

Andrey Chubukov '
Department of Physics, University of Illinois at Urbana Ch-ampaign, I I IO West Green Street, Urbana, Illinois 6I80I

and Institute for Theoretical Physics, University of California at Santa Barbara, Santa Barbara, California 9I I 06-4030
(Received 9 April 1992)

A Heisenberg antiferromagnet on a kagome lattice is highly degenerate in the classical limit. I show
that quantum fluctuations lift the degeneracy and yield the low-energy branch of spin-wave excitations
with a velocity which is a factor S ' smaller than for conventional spin waves. The relevance of these
results to the experiments on the stacked kagome antiferromagnet SrCr8- Ga4+, O]9 is discussed.
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Many frustrated spin systems experience a phenome-
non which Villain et al terme. d order from disorder [1].
Specifically, in the classical limit, the actual degeneracy
of the ground state turns out to be larger than required

by the symmetry-breaking pattern. This leads to extra
zero modes in the spin-wave spectrum and to divergent
fluctuation corrections to the on-site magnetization.
However, quantum (or thermal) fluctuations, which nor-

mally work against ordering, lift the "accidental" degen-
eracy and thus restore long-range order.

The phenomenon was initially observed in several com-
plicated 3D magnets with competing further-neighbor in-

teractions [2,3]. Recently it was also found in 2D frus-
trated magnetic systems (e.g. , in the Ji-Jz-Js model
[4-7] and in triangular antiferromagnets [8]) which were

intensively studied in a context of high-T, superconduc-
tivity.

The 2D Heisenberg antiferromagnet on a kagome lat-
tice (KAFM) (Fig. I) is described by

H=JiZSn Sn+ti
n, h

In this system, the order-from-disorder phenomenon plays
a much greater role than in any other frustrated magnet
due to an extremely high degeneracy of the ground state
in the classical limit. In fact, the only requirement for
any particular configuration to be a ground state for clas-
sical spins is that the total spin of any elementary triangle
in Fig. 1 should be equal to zero. This allows for local
distortions of the spin configuration with no cost in ener-

gy and, for coplanar states, leads to a very specific spin-
wave spectrum which contains a whole branch of zero-

energy excitations (i.e. , e =0 for all k„, kr) [9-12].
The activity in the subject of KAFM was initiated by

the observation that in a layered compound SrCrq —,--

Ga4y, 0~9 (Sr-Cr-Ga-O), the S= —', Cr + ions form a
stack of dense kagome lattices separated by more dilute
triangular lattices [13,14]. (Another example of a
KAFM is a second layer of He on graphite [15].) The
magnetothermal [13] and neutron-scattering [14] mea-
surements on Sr-Cr-Ga-0 reported the existence of a
(presumably) spin-glass transition only at T, —3.3 K.
which is well below the Curie-Weiss temperature Hgw of
about 500 K, obtained from the susceptibility measure-
ments. The specific heat varies as T below T, which is

consistent with the spin-wave theory in 2D, but requires
the spin-wave velocity to be about 25 times smaller than
Hew to account for the experimental data [13]. The
challenge for the theory is therefore to explain how this
low-energy scale appears in a KAFM.

In the present paper, I address this issue. I will show
that at large S quantum fluctuations lift the local degen-
eracy in KAFM, restore long-range order at T=O, and
produce the dispersion for classically soft excitations.
The fluctuation-induced spin-wave velocity scales as C,„—J~S as compared to J~S for ordinary spin waves,

yieldin~ a specific heat, C- (T/J iS ) S,which is a fac-
tor S )&1 larger than that in a conventional antifer-
romagnet.

One way to lift the degeneracy in a KAFM, which
works already in the classical limit, is to consider the in-

teractions between further neighbors, say, second neigh-
bors along basis vectors of the lattice (the Ji coupling).
Besides removing the degeneracy, this interaction also

F'IG. 1. Two-dimensional kagome lattice with (a} basis vec-
tors and the two Neel ground states for finite J3. (b) The q=0
state is selected at J3 (0 and (c) the v 3X J3 state is selected at
J3 & 0. 8, B, and C label three different spin directions oriented
120' apart.
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selects two particular Neel configurations which are the
true ground states for nonzero Js (Ref. [9]). One of the
states is the so-called q =0 state of Fig. 1(b) with fer-
romagnetic ordering of the spins coupled by the Jq ex-
change. This configuration is a classical ground state for
negative Jq. The other is a conventional 120 antifer-
romagnet hereafter referred to as a %3X&3 state [Fig.
1(c)]. It has second neighbors along basis vectors orient-
ed 120' apart and is clearly favored when Js) 0. My
goal is to show that in a quantum KAFM, both states are
stable also at Js =0. The analogous results were obtained

by Sachdev in the large-N approach to the problem [16].
A standard way to study the role of quantum fluctua-

tions in removing the degeneracy is to calculate the lead-

ing corrections to the spin-wave spectrum at T=0. These
corrections should normally leave only those zero modes
which are related to a broken rotational symmetry in the
problem. The perturbative approach works well when the
"accidental" degeneracy leads to extra points or, at most,
lines of zero energy in the spin-wave spectrum [6,7].
However, in a classical KAFM, there is a whole branch
of excitations with zero energy. An obvious consequence
is that the solution of the quantum problem should be of
a self-consistent type, i.e., one should first assume that
quantum fluctuations produce a finite stifl'ness for excita-
tions and then find a self-consistent solution for the ener-

gy (alternatively, one can work at finite Js and take the
limit Js 0 only after renormalization). In principle,
the necessity of this procedure raises a question about the
validity of restricting to only leading quantum correc-
tions. However, anticipating the result, the additional
factor that one picks up by increasing the order in the
perturbative expansion is a =(1/S) (J~S/C, „)-S
Though a is parametrically larger than the conventional
1/S, it is still a small parameter which justifies the pertur-
bative approach.

I start with the q =0 phase. To obtain the bosonic ana-
log of Eq. (1) is straightforward. I introduce three bo-
sonic fields for the spins labeled as 3, 8, and C in Fig.
1(b) and use the standard Dyson-Maleev transformation.
The spin-wave spectrum has three branches of excitations
with the dispersion ek~' =2J~S[(A») —(8») ]'t, where

Ak =1+6;/4, 8» = —3A;/4, and i =1,2, 3 labels the
branches of excitations. The values of h, are h~= —1,
+2 s (I ~X»)/2, where Ak =(I +8vk vk vk +k ) ', vk,
=cosk~. Two branches of excitations have equal disper-
sion with a finite spin-wave velocity at k =0,
=J~SQ», where

Qk
= —,

' (9 —4X») =sin k +sin k~+sin (k„+ki,),
while the third energy, e~', is zero for all k as a conse-
quence of a local degeneracy in the classical limit
[9-11,17].

The leading quantum corrections to the spin-wave
spectra are the first-order corrections due to quartic
anharmonic terms and the second-order corrections due
to cubic terms. Both corrections have an overall factor

(3a)

where

G~' =sin p„+sin p~+sin (p„+p~),

Gpt i =sin2p„sin p~+sin p„sin (p„+pi, )

+sin pepsin (p„+p~).

1/S comIiared to the bare spectrum. Since the renormal-
ized ek' is assumed to be parametrically small with

respect to ek, the most significant anharmonic contri-
butions are those which contain eg' in the denominator.
Below I will focus only on the renormalization of the soft
branch.

The contribution from the quartic terms can be calcu-
lated rather easily. In essence, one should simply decou-
ple the fourfold terms in the bosonic version of Eq. (1).
This gives corrections to both Ag and BI,' in the quadratic
form. Since 8»+8» =

2 already for classical spins, only
corrections to 8 =HI,' —BI,

' are important. Without renor-
malization, 8=0. When quartic terms are taken into ac-
count, 8 acquires a momentum indep-endent contribution,

8 3 2JS
16SN~ t~& (2)

E'q

The integration in Eq. (2) is over the Brillouin zone for a
triangular lattice. The momentum independence of B~

could be anticipated since quartic terms do not distin-
guish whether the neighboring spins are oriented +120
or —120' apart. In other words, they are identical for
any coplanar spin configuration and cannot remove the
degeneracy [18].

The evaluation of the diagrams due to the cubic terms
requires more efl'ort. Three types of cubic vertices are of
equal importance. The first represents the interactions
solely between soft bosons while the other two represent
the interactions between soft particles and the two other
branches of excitations. I will label the corresponding
contributions to 8 as Bp and Bs, respectively (Bs is the to-
tal contribution from the last two interactions).

To obtain the vertex functions for triple processes, one
should make a transformation to Bose operators which di-
agonalize the quadratic form. This procedure, as well as
the evaluation of diagrams, requires lengthy calculations
which will be presented elsewhere. Here I will instead
focus only on the results. It is instructive to consider first
the point k=0. The symmetry-breaking pattern in the

q =0 phase requires ek' to have the true Goldstone mode
at this point. This is indeed the case when Js is finite,
ek 2J tS[ i uQk ( 2 + i uQk )] '"-Ik I, wh«« =

I Jil/
J~. In the quantum problem, the Goldstone mode is re-
stored only when one combines the contributions from
quartic and cubic terms. To see this, I performed the cal-
culations at k 0, and obtained

3 2J1~ g (1) 6 (2)

16',
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3 ~ 2J(S
S P ep' Qp Q2„/3 p

X ( —', —
gpss) .

(Q'./ —,+Q,'- -')

(sb)

Here Q3 /3 —p Q2z/3 —p 2z/3 —p One can immediately
check that bi+8'2+63=0 and the Goldstone mode at
k = + kp survives the effect of quantum fluctuations. The

When taken together, 82+83= —(3/16SN)+~2J(S/ep',
exactly cancel the contribution from 6~. After the Gold-
stone mode is restored, one can expand 6; near k =0 and
obtain a self-consistent equation for the spectrum,

2J S 6(l)
16SN . .('3

Q,
4

It immediately follows from Eq. (4) that for small k,
ek' =2J(SC,„Qk as if the J3 coupling was finite. The
kernal in Eq. (4) is positive over the whole Brillouin zone
and hence the spin-wave frequencies are real. The spin

dependence of the spin-wave velocity follows from

C, —(I/S)/C, „, which yields C,„-S '/ &(1. Note
that to get an exact solution for the spectrum, one should
know the kernel in Eq. (4) for arbitrary k which is rather
dificult to obtain. However, one can estimate the magni-
tude of C,„by assuming that the whole spectrum
preserves the same form (ek' -Qk) as in the classical
problem at a finite J3. %ithin this assumption, one can
perform the integration over the Brillouin zone on the
right-hand side of Eq. (4) and obtain C,„=0.42/S'/.

The calculations for the J3x J3 phase proceed along
the same lines. I preserve the description in terms of the
three bosonic fields, only now the neighboring spins cou-
pled by J3 are oriented 120' apart (this procedure is

equivalent to a one-sublattice description of a convention-
al triangular antiferromagnet). For nearest-neighbor
KAFM, the unrenormalized spin-wave spectrum is identi-
cal to that in the q =0 phase (as well as in any other pla-
nar configuration) and involves a branch of zero-energy
excitations. At the same time, the symmetry-breaking
pattern in the 43 x J3 phase is different from that in the
q=0 phase and, in particular, it requires the true zero
modes in ek to be located at +'ko rather than at k =0-(i)

(hereafter I use e to label the excitations in the J3x J3
phase). This is indeed the case when J3 is finite and posi-
tive: e/,

' =2J i Sa ' [( 4
—

Qk ) (2+ 9 agk )] ' touches
zero at k=+ ko, where Qk2, = —', . Hence, the first thing

one has to prove about the %3xJ3 phase is that the com-
bined corrections from quartic and cubic terms preserve
the Goldstone modes at k = ~ ko in the quantum prob-
lem as well. The quartic terms are identical for any pla-
nar configuration and iS( is thus given by Eq. (2). The
contributions from the triple processes at k + kp are

8 =— 2J)S j (2+29)2
8SN ~ -(1) 2 2

P ep p 2x/3 —p

(sa)

expansion around + kp then produces a dispersion in ek'

which is linear in deviations from kp..

ek' =2J(SC,„(2
—2gp ) ' (6)

where

2J,S (4 —Q2-/3-p)(4 —Qp)

4SN -(i) g 2g 2
(7)

The kernel in this equation is again positive over the
whole Brillouin zone and hence the spin-wave velocity
C,„ is real. The magnitude of C,„can be estimated in

the same way as for the q =0 state, i.e., by assuming that
the whole spectrum preserves the same shape [e~
—(2 —2Qk) ' ] as in the classical problem at a small

but finite J3. This gives C,„=0.40/S'/, which is slightly
less than the spin-wave velocity for the q =0 state [19].

What emerges from the above analysis is that if one
scans over J3/Ji, the stability regions for the two possible
Neel ground states in a KAFM overlap in a finite region-S / around the nearest-neighbor KAFM. In both
states the Neel long-range magnetic order survives at
large S with the fluctuation corrections being of the order
of (I/S)g p2JS(/ e'p-S . The behavior at small
S may be different as suggested by several authors
[11,20,21], but to investigate it is beyond the scope of the
present paper.

Inherent to the studies of the order-from-disorder phe-
nomena is that the renormalized spin-wave theory allows
one to find whether a particular state becomes a local
minimum in the presence of fluctuations. More eff'ort is

required to find a global minimum. High-temperature
[9] and large-N [16] expansions predict that it should be
the J3x+3 state. This is consistent with our observation
that the induced spin-wave velocity for the J3 x E3 phase
is smaller than that for the q =0 phase. However, to
properly address the question of the global stability
within 1/S expansion, one should calculate eg' for all k.
This problem is not solved at the moment.

To summarize, I have shown that in a Heisenberg anti-
ferromagnet on a kagome lattice, quantum fluctuations
lift the local degeneracy, restore long-range magnetic or-
der at T =0 in both ground-state candidates, and produce
a new energy scale for the spin-wave velocity, C,„
=2J~SC,„,which at large S is a factor S' smaller than
the conventional energy scale inferred from the nearest-
neighbor exchange [22]. This yields a large specific heat
C(T) = 2.06(T/C, „)'—(T/J S)'S' '

The T form of C(T) was observed in the S= —', ka-

gome antiferromagnet Sr-Cr-Ga-0 [13]. The nearest-
neighbor exchange was extrapolated from the high-
temperature data [14] to be Ji =S7 K (Ref. [9]). For
this value of J], C,„should be about 0.2J]S to account
for the experimental data for C(T). The extrapolation of
the large-S expansion to S=

& gives a somewhat larger
value, C,„=0.7J~S. However, the solution for C,„ is

only approximate and more work is necessary to conclude
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to what extent the new scale produced by quantum Auc-

tuations is relevant to the magnetothermal experiments
on Sr-Cr-Ga-0. The study of the neutron-scattering data
deserves a separate consideration.

I acknowledge useful discussions with G. Aeppli, I.
Ameck, A. J. Berlinsky, P. Coleman, D. Frenkel, C. L.
Henley, D. L. Huber, D. Huse, C. Kallin, A. P. Ramirez,
S. Sachdev, E. F. Shender, J. Reimers, N. Read, and A.
P. Young. I am also grateful to the staff at the Institute
for Theoretical Physics in Santa Barbara for the hospital-

ity during the completion of this work. The research was

supported by NSF Grants No. DMR 88-09854 through
the Science and Technology Center for Superconductivity
at UIUC and No. PHY 89-04035 (ITP).

' Also at the P. L. Kapitza Institute for Physical Problems,
Moscow, Russia.

[I] J. Villian, R. Bidaux, J. P. Carton, and R. Conte, J. Phys.
(Paris) 41, 1263 (1980).

[2] See, e.g. , E. Rastelli and A. Tassi, J. Phys. C 19, L423
(1986), and references therein.

[3] E. F. Shender, Zh. Eksp. Teor. Fiz. $3, 326 (1982) [Sov.
Phys. JETP 56, 178 (1982)]; C. L. Henley, Phys. Rev.
Lett. 62, 2056 (1989).

[4] N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989); S. Sachdev and N. Read, Int. J. Mod. Phys. B 5,
219 (1991).

[5] M. P. Gelfand, R. R. P. Singh, and D. A. Huse, Phys.
Rev. B 40, 10801 (1989); P. Chandra, P. Coleman, and

A. I. Larkin, J. Phys. Condens. Matter 2, 7933 (1990); P.
Chandra and P. Coleman, Phys. Rev. Lett. 66, 100
(1991); A. Moreo, E. Dagotto, Th. Jolicoeur, and J.
Riera, Phys. Rev. B 42, 6283 (1990).

[6] A. V. Chubukov, Phys. Rev. B 44, 392 (1991); F. Mila,
D. Poliblanc, and C. Bruder, Phys. Rev. B 43, 7891
(1991).

[7] M. P. Gelfand, Phys. Rev. B 42, 8206 (1990); S. Sachdev
and R. N. Bhatt, Phys. Rev. B 41, 4502 (1990); A. V.
Chubukov and Th. Jolicoeur, Phys. Rev. B 44, 12050
(1991).

[8] H. Kawamura and S. Miyashita, J. Phys. Soc. Jpn. 54,
4530 (1985); A. V. Chubukov and D. I. Golosov, J. Phys.
Condens. Matter 3, 71 (1991);Th. Jolicoeur, E. Dagotto,
E. Gagliano, and S. Bassi, Phys. Rev. B 42, 4800 (1990);

Q. Sheng and C. L. Henley, J. Phys. Condens. Matter 4,
2937 (1992); S. E. Korshunov (to be published); A. V.
Chubukov and Th. Jolicoeur, Phys. Rev. B (to be pub-

lished).
[9] A. B. Harris, C. Kallin, and A. J. Berlinsky, Phys. Rev. B

45, 2889 (1992).
[10] J. T. Chalker, P. S. Holdsworth, and E. F. Shender, Phys.

Rev. Lett. 6$, 855 (1992).
[1 1] I. Ritchey, P. Chandra, and P. Coleman, "Spin Origami:

The 2D Heisenberg Kagome Antiferromagnet" (to be
published).

[12] J. N. Reimers, A. J. Berlinsky, and A. -C. Shi, Phys. Rev.
B 43, 865 (1991).

[13] A. P. Ramirez, G. P. Espinosa, and A. S. Cooper, Phys.
Rev. Lett. 64, 2070 (1990); Phys. Rev. B 45, 2505
(1992).

[14] C. Broholm, G. Aeppli, G. P. Espinosa, and A. S. Cooper,
Phys. Rev. Lett. 65, 3173 (1990).

[15] V. Elser, Phys. Rev. Lett. 62, 2405 (1989); D. S.
Greywall and P. A. Busch, Phys. Rev. Lett. 65, 2788
(1990).

[16] S. Sachdev, Phys. Rev. B 45, 12377 (1992).
[171 C. Zeng and V. Elser, Phys. Rev. B 42, 8436 (1990).
[18] Q. Sheng and C. L. Henley, Bull. Am. Phys. Soc. 37, 603

(1992).
[19]Actually, to prove that both states are local minima in a

KAFM, one should show that the spectrum is real not

only near zero modes but over the whole Brillouin zone.
For arbitrary k, the calculation of the dispersion is a rath-
er difficult problem. However, I have explicitly calculated
the self-energy corrections at k (~ z/3, ~ x/3) for the

q =0 state and at k =0 for the J3&J3 state and in both

cases found that the excitation energies are real because
the kernels in the corresponding integral equations are
positive over the whole Brillouin zone.

[20] R. R. P. Singh and D. Huse, Phys. Rev. Lett. 6$, 1706
(1992).

[21] J. B. Marston and C. Zeng, J. Appl. Phys. 69, 5692
(1991);T. S. Hsu and A. J. Schofield, J. Phys. Condens.
Matter 3, 8067 (1991).

[221 The analogous results can be obtained if we consider the
effects of thermal rather than quantum fluctuations. The
induced spin-wave velocity scales with the temperature as
Caw- (T/JiS) V . The long-range magnetic order at
T 0 was also obtained in numerical simulations for
classical spins: D. A. Huse and A. D. Rutenberg, Phys.
Rev. B 45, 7536 (1992).

835


