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We present Hilbert-space basis set reduction as a novel approach to reduce the computational eAort of
accurate correlation calculations for large basis sets. We motivate the method by an examination of the
perturbative corrections in scaling theory and present a criterion for the choice of the internal basis. The
method is illustrated with two calculations for the ground state of carbon and the energy curve of the
beryllium dimer: In either case the errors introduced are less than 1% of the correlation energy. The
method scales as the second power of the number of the basis functions and can exploit the benefits of
massive parallelization.

PACS numbers: 71.10.+x

The calculation of many properties of atoms and mole-

cules, in particular the ground-state energy, requires an
accurate treatment of many-body efects. The many-

body wave function is often expanded in Slater deter-
minants constructed from a set of single-particle orbitals,
i.e., from a finite and hence incomplete basis set. As the
number of available orbitals (N) is increased the many-

body wave function and energy converge slowly to their
respective "complete-basis" values. At the same time the
number of terms in the wave function and hence the com-
putational cost increase, the methods currently used typi-
cally scale from N to N [I]. This very rapidly increas-

ing cost is one of the chief limitations on our ability to
perform accurate ab initio calculations for larger molecu-
lar systems. The slow convergence of the many-body en-

ergy with the number of single-particle orbitals N can be
traced to the ansatz for the wave function: The electron-
electron cusps in the wave function are poorly approxi-
rnated by linear combinations of Slater determinants.

Many attempts have been made to improve the conver-

gence of the many-body energy, for example, by includ-

ing explicit correlation factors in the wave function [2].
Such methods trade a more compact form of the wave

function for a more complex form of the Hamiltonian;
i.e. , the resulting many-body Hamiltonian is less sparse.
Basis set reduction, as originally proposed by Freed [3], is

an alternate approach to this problem: In Freed's method
the majority of orbitals are treated in quasidegenerate
many-body perturbation theory. The basis is partitioned
in two distinct subsets of "internal" and "external" orbit-
als. Consider the internal subset of the basis as required
describe the nonperturbative single-particle properties of
the problem, i.e., the gross charge distribution of atom or
molecule. The remaining external orbitals account for
the contributions of the electron cusp in the many-body
wave function and wi11 be treated in an approximate
fashion. We can then compute an eAective Hamiltonian
with only internal indices, which takes the effects of the
external orbitals perturbatively into account. It is well

known that the single-particle wave function and energy
converge comparatively rapidly with the number of orbit-

als [4], therefore the internal subset constitutes only a

small fraction of the full basis [5].
In the traditional approach, however, the eff'ective

Hamiltonian has to contain three-electron terms to
achieve the desired accuracy [6]. These terms arise natu-
rally even in first-order perturbation theory, and their
number scales as O' . As long as these terms are present
it is difficult to obtain fundamentally faster convergence
than traditional methods. In the method presented here
the "effective Hamiltonian' for the internal basis is never
explicitly constructed. We instead directly construct an

approximate many-body state in the external space—shifting the focus from the construction of an explicit
effective operator (Fock space) to the construction of an

explicit many-body state (Hilbert space). Our main ap-
proximation is the neglect of the off-diagonal external
many-body matrix elements [7]. We typically retain in

excess of 99% of the total correlation energy, while main-

taining the cost-advantage basis set reduction off'ers: Only
a small subset of the total basis enters the expensive
many-body calculation. The remaining "external" orbit-
als appear only in the basis-set-reduction step, which

scales only as N with the number of orbitals. The
effects of the most important three-electron terms are
taken into account, even though such terms never appear
explicitly. The choice of internal basis as the minimal
subset of the basis which requires nonperturbative tech-
niques is nontrivial; we will return to it below.

We present the results for the ground state of carbon
and the energy surface of the beryllium dimer. For car-
bon, Table I shows that our basis-set-reduction technique
introduces errors consistently less than 1% of the contri-
bution of the external orbitals to the energy, while the
computational eAort is reduced by about a factor of 10
compared to our implementation of a conventional
method. The results for beryllium are particularly strik-

ing, since the equilibrium bond length depends crucially
on the effects of the external orbitals (see Fig. I). Using
the internal basis sets alone we obtain only a poor
description of the energy surface. The results from basis
set reduction, however, closely approximate the exact en-
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TABLE I. Basis-set-reduction errors (hs" in mH) and the

number of "root" determinants (in parentheses) as a function of
the threshold e for the P state of the carbon atom. The errors
are defined as the energy difference between the basis-set-
reduction result and the full CI energy of all orbitals. Three
scenarios were considered: reduction from a QZP and TZP to
an internal DZP basis, and reduction from the QZP basis to an

internal TZP basis. In all cases the errors converge rapidly with

e to limiting values of less than 1% of the contribution of the
external orbitals.
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FIG. I. Energy (H) of the beryllium dimer as a function of
bond distance (a.u.). We investigated two basis sets (basis 2
and basis 5 from Harrison) with a total of 36 and 80 basis func-
tions, respectively; the internal basis contains 22 functions in ei-
ther case. Results for the large (small) basis are denoted by
solid (open) symbols. We plot the FCI energy of the full basis
( ), the HS-BSR energy (" ), and the FCI energy of the
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We first compute the many-bpdy state @iiii ga,4; us- amounts to fit on the energy range in the graph. The fu

ing pnly the Slater determinants @~ in the Internal space curve using all available orbitals shows a minimum, which

We use a full cpnfiguratipn interactipn (CI) program [8] sent when only the internal orbitals are used to compute th

f h b th d h h ves the coef ergy. This minimum therefore stems entirely from effects o
external orbitals and is well reproduced in basis set reduc

ficients of the many-body configurations may be em-
The locations of the minima are indicated by arrows.

ployed [9]. We introduce a threshold parameter e, select
all determinants in 4;„, with large enough coeflicients

lal ) e as "root determinants, " and construct all single
and double excitations from this set. For the kth external determinant 4& we then solve for the lower eigenvalue pf

and combine the coefficients aq to form the state vector
in the external space 0,„, =gkak@k. This external
many-body state generates an effective field on the inter-

nal wave function. We finally solve for the variational
wave function in the internal space [10] in the presence of
this field, minimizing

E(%,")=&V, "lHl%' s"&+(&% "lHl%' ")+H.c.)

i&@BsR
l H l @BsR& (2)

These equations contain the two most important ap-
proximations in this theory: In Eq. (1) we have approxi-
mated the off-diagonal element by the matrix element be-
tween the external determinant and the internal state; an
exact treatment would include coupling to the other
external configurations. The variational degrees of free-
dom in Eq. (2) are restricted to the coefficients of the
internal Slater determinants. We will argue below that
this formulation recovers the most important contribu-
tions which arise in a scaling analysis (in momentum
space) of the external energy contribution.

Since the internal many-body basis is a small fraction
(often less than 1%) of the total many-body basis, this

approach leads to a dramatic reduction in the computa-
tional effort in the variational step. Because external
determinants are no longer coupled, the basis-set-re-
duction step scales as N, with the number of external or-
bitals N„and is well suited for a massively parallel im-

plementation. The vast majority of the matrix elements,
namely, off-diagonal matrix elements involving more than
two external indices, never enter the calculation and
hence need not be computed in the four-index transfor-
mation preceding the correlation calculation.

We have investigated two cases to test the method.
The results of our calculation for the P state of carbon
are shown in Table I. We investigated three basis sets,
which were optimized by Dunning for the carbon atom
[4]. (i) Basis 1: 14 orbitals, (9s4p ld)/[3s2p ld], with 3
s orbitals, 2 p orbitals, and 1 d orbital. This basis set is
labeled the double zeta basis (DZP) with d-wave polar-
ization functions. The Hartree-Fock energy is essentially
converged of this basis. (ii) Basis 2: 30 orbitals; in the
triple zeta basis (TZP) (los5p2d 1f)/[4s3p2d lf], one
additional shell is added for each angular momentum,
and one set of f-wave polarization orbitals is added. Us-
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ing this basis set the full many-body [11] energy is

lowered by 55. 1 mH compared to basis 1. (iii) Basis 3:
55 orbitals; this set (12s6p3d2flg)/[5s4p3d2flg] is the

quadruple zeta basis (QZP) in the series. Compared with

basis 2, the ground-state energy is lowered by 8.6 mH.
We present results for the basis-set-reduction error

for reduction from the QZP and TZP basis sets to
an internal DZP basis and for reduction from the QZP
basis to an internal TZP basis set. We define the basis-
set-reduction error h, " as the diA'erence between the
full CI valence energy of the full basis and the energy ob-

tained from basis set reduction. For each choice for the
full and the internal basis we have varied the threshold

parameter e. We find that for sufficiently small thresh-
olds e, the errors saturate to values of less than 1% of the
total external contribution. This accuracy is surprising,
considering that up to 99.6% of the matrix elements of
the many-body Hamiltonian have been neglected. To
check that the error does not result from spurious cancel-
lations, we verified that the angle between the exact
external component of the wave function and its approxi-
mant is small (a=0.08). For most applications, the er-

rors arising in the reduction to the smallest basis present-
ed here should be tolerable. We have presented the re-

sults for reduction to an internal basis of triple zeta size

to demonstrate that the accuracy of the result can be in-

creased simply by increasing the size of the internal basis.
The results also deteriorate when the internal basis is

chosen too small: For reduction from a TZP to a mini-

mal internal basis, the error increases to 66% of the total
contribution.

The beryllium dimer is very weakly bound (see Fig. 1);
determining the equilibrium bond distance has long been

a challenge for quantum chemistry techniques [12]. Here
we report results for basis 2 and basis 5 from Harrison
and Handy [12], with a total of 36 and 80 basis func-

tions, respectively. A large basis is required for an accu-
rate description of this simple system, because the bal-

ance between the nuclear repulsion and the screening

charge is very delicate. Beryllium does not bind in the
Hartree-Fock approximation: The accurate treatment of
correlation effects is therefore essential. In this light, the
results from basis set reduction are particularly striking:
For the small basis, using the internal orbitals alone (11
orbitals per atom; see the dashed lines in Fig. 1) we find

no minimum for bond length from 4.5 to 5.25 a.u. Nev-

ertheless the basis-set-reduction energies (dotted lines)
are essentially parallel to the full CI curve (solid lines),
which was taken from the calculation of Harrison and

Handy [12]. We further note that the relative errors in

the energy diff'erences between the points are only about
10%. This indicates that energy diA'erences are repro-
duced to within a small fraction of the absolute basis-set-
reduction error; the minima of the potential curves are
virtually identical. For the large basis, where the number
of external orbitals is increased almost fourfold, the mini-

ma shift by about 0.3 a.u. This shift is again faithfully
reproduced by the basis-set-reduction result, which has a
minimum at 4.82 a.u. while the full CI minimum is at
4.77 a.u. Only the most expensive traditional techniques
render bond length of comparable quality. The fact that
basis set reduction is capable of capturing these eAects in-

stills some confidence that this method can accurately
treat the correlation eA'ects in the external basis for other
multireference molecular calculations.

Scaling theory. —We brieAy digress to perturbation
theory to compare the energy contributions of the exter-
nal orbitals as they arise in momentum-space scaling
theory and in basis set reduction: If we assume that the
H artree-Fock energy is essentially converged for the
internal basis, the many-body configurations with exter-
nal orbitals will mainly contribute to the description of
the electron-electron cusps in the wave function. It is

known that wave functions with momenta of order p yield
contributions of order hE(p)-p to the correlation en-

ergy [2]. We note that for the basis sets discussed here,
the momenta of the external orbitals are at least about 4
times larger than the momenta of the valence orbitals.
For basis set reduction to succeed, we must therefore re-

cover the contributions of the orbitals with high momenta
in our formalism. It can be shown that the only correc-
tion of order p arises in first order in perturbation
theory from double excitations into external orbitals. If
we expand the coefficients in the external state in Eq. (1)
to first order, we recover exactly the same term. Terms
which involve matrix elements between two diA'erent

external configurations first arise in second order and are
suppressed by a factor of O(p ) with respect to the
leading term [13].

Choice of the internal basis. —The poor results for
large threshold t. , i.e., few internal "root" determinants,
and for small internal basis sets indicate that care must

be exercised in the choice of the internal basis. The scal-

ing analysis of the external contributions suggests that
this formalism is well suited to incorporate the high-

momentum corrections to the electron-electron cusps in

the wave function, To obtain the leading correction we

must accurately treat double excitations into external
space, If the "single-particle" properties of the system
are not adequately described by the internal basis, exter-
nal orbitals contribute significantly to the occupied
molecular orbitals. This means that Slater determinants
with three external orbitals will become important in the
many-body state; the extra excitation level arises from
the unitary transformation to the molecular orbitals.
Such triple excitations are not included in the wave func-

tion constructed by our method; it is therefore not

surprising that it fails when the interna1 basis is chosen
too small. We must therefore require that the Hartree-
Fock energy is well converged on the internal basis [13];
an internal double zeta basis is usually suScient.

In conclusion, basis set reduction in Hi1bert space leads
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to a dramatic reduction of the computational effort in ac-
curate atomic and molecular calculations with standard
basis sets. The computational eA'ort to treat the external
orbitals is ultimately dominated by the four-index trans-
formation on the external indices, even when we take ad-
vantage of the fact that off-diagonal integrals with more
than two external indices do not appear in the calcula-
tion. We would like to point out that there is no require-
ment that Hartree-Fock orbitals be used for the external
orbitals. This offers the opportunity to localize the exter-
nal orbitals for large molecules, using any of the standard
techniques [14]. Generalizing the method presented here,
we may be able to construct an ab initio pseudopotential
for the core electrons in heavy elements for the treatment
of core-valence correlation corrections.
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